Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29158431

RESUMEN

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.


Asunto(s)
Exosomas/metabolismo , Factores Inmunológicos/análisis , Macrófagos/metabolismo , Macrófagos/microbiología , Proteoma/análisis , Infecciones por Salmonella/patología , Salmonella typhimurium/inmunología , Células Cultivadas , Humanos
2.
Biochim Biophys Acta ; 1864(5): 562-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26854600

RESUMEN

Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY: We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Biosíntesis de Proteínas/genética , Yersiniosis/genética , Yersinia enterocolitica/genética , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Proteómica , Yersiniosis/microbiología , Yersinia enterocolitica/patogenicidad
3.
Int J Toxicol ; 36(5): 395-402, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820005

RESUMEN

Repeated developmental exposure to the organophosphate (OP) insecticide chlorpyrifos (CPF) inhibits brain fatty acid amide hydrolase (FAAH) activity at low levels, whereas at higher levels, it inhibits brain monoacylglycerol lipase (MAGL) activity. FAAH and MAGL hydrolyze the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG), respectively. Peripherally, AEA and 2-AG have physiological roles in the regulation of lipid metabolism and immune function, and altering the normal levels of these lipid mediators can negatively affect these processes. Exposure to CPF alters brain endocannabinoid hydrolysis activity, but it is unclear whether low-level exposure alters this activity in peripheral tissues important in metabolic and immune function. Therefore, rat pups were exposed orally from day 10 to 16 to 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 (a specific FAAH inhibitor). At 12 hours postexposure, FAAH, MAGL, and cholinesterase (ChE) activities were determined. All treatments inhibited FAAH activity in brain, spleen, and liver. CPF inhibited ChE activity in spleen and liver (all dosages) and in brain (highest dosage only). CPF inhibited total 2-AG hydrolysis and MAGL-specific activity in brain and spleen (high dosage only). In liver, total 2-AG hydrolysis was inhibited by all treatments and could be attributed to inhibition of non-MAGL-mediated 2-AG hydrolysis, indicating involvement of other enzymes. MAGL-specific activity in liver was inhibited only by the high CPF dosage, whereas PF-04457845 slightly increased this activity. Overall, exposure to low levels of CPF and to PF-04457845 can alter endocannabinoid metabolism in peripheral tissues, thus potentially affecting physiological processes.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Ácidos Araquidónicos/metabolismo , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Insecticidas/toxicidad , Alcamidas Poliinsaturadas/metabolismo , Piridazinas/toxicidad , Urea/análogos & derivados , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colinesterasas/metabolismo , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Bazo/metabolismo , Urea/toxicidad
4.
Pathogens ; 11(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35631115

RESUMEN

Spotted Fever Rickettsiosis (SFR) is caused by spotted fever group Rickettsia spp. (SFGR), and is associated with symptoms common to other illnesses, making it challenging to diagnose before detecting SFGR-specific antibodies. The guinea pig is a valuable biomedical model for studying Spotted Fever Rickettsiosis (SFR); its immune system is more like the human immune system than that of the murine model, and guinea pigs develop characteristic clinical signs. Thus, we have a compelling interest in developing, expanding, and optimizing tools for use in our guinea pig-Amblyomma-Rickettsia system for understanding host-tick-pathogen interactions. With the design and optimization of the three multiplex TaqMan® qPCR assays described here, we can detect the two SFGR, their respective primary Amblyomma sp. vectors, and the guinea pig model as part of controlled experimental studies using tick-transmission of SFGR to guinea pigs. We developed qPCR assays that reliably detect each specific target down to 10 copies by producing plasmid standards for each assay target, optimizing the individual primer-probe sets, and optimizing the final multiplex reactions in a methodical, stepwise fashion. We anticipate that these assays, currently designed for in vivo studies, will serve as a foundation for optimal SFGR detection in other systems, including fieldwork.

5.
Front Microbiol ; 13: 1007657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312968

RESUMEN

Listeria monocytogenes, the causative agent of listeriosis, displays a lifestyle ranging from saprophytes in the soil to pathogenic as a facultative intracellular parasite in host cells. In the current study, a random transposon (Tn) insertion library was constructed in L. monocytogenes strain F2365 and screened to identify genes and pathways affecting in vitro growth and fitness in minimal medium (MM) containing different single carbohydrate as the sole carbon source. About 2,000 Tn-mutants were screened for impaired growth in MM with one of the following carbon sources: glucose, fructose, mannose, mannitol, sucrose, glycerol, and glucose 6-phosphate (G6P). Impaired or abolished growth of L. monocytogenes was observed for twenty-one Tn-mutants with disruptions in genes encoding purine biosynthesis enzymes (purL, purC, purA, and purM), pyrimidine biosynthesis proteins (pyrE and pyrC), ATP synthase (atpI and atpD2), branched-chain fatty acids (BCFA) synthesis enzyme (bkdA1), a putative lipoprotein (LMOF2365_2387 described as LP2387), dUTPase family protein (dUTPase), and two hypothetical proteins. All Tn-mutants, except the atpD2 mutant, grew as efficiently as wild-type strain in a nutrient rich media. The virulence of twenty-one Tn-mutants was assessed in mice at 72 h following intravenous (IV) infection. The most attenuated mutants had Tn insertions in purA, hypothetical protein (LMOf2365_0064 described as HP64), bkdA1, dUTPase, LP2387, and atpD2, confirming the important role of these genes in pathogenesis. Six Tn-mutants were then tested for ability to replicate intracellularly in murine macrophage J774.1 cells. Significant intracellular growth defects were observed in two Tn-mutants with insertions in purA and HP64 genes, suggesting that an intact purine biosynthesis pathway is important for intracellular growth of L. monocytogens. These findings may not be fully generalized to all of L. monocytogenes strains due to their genetic diversity. In conclusion, Tn-mutagenesis identified that biosynthesis of purines, pyrimidines, ATP, and BCFA are important for L. monocytogens pathogenesis. Purine and pyrimidine auxotrophs play an important role in the pathogenicity in other bacterial pathogens, but our study also revealed new proteins essential for both growth in MM and L. monocytogenes strain F2365 virulence.

6.
Pathogens ; 11(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215063

RESUMEN

Intact, the skin typically serves as an effective barrier to the external world; however, once pathogens have breached this barrier via a wound, such as a tick bite, the surrounding tissues must recruit immune cells from the blood to neutralize the pathogen. With innate and adaptive immune systems being similar between the guinea pig and human systems, the ability of guinea pigs to show clinical signs of many infectious diseases, and the large size of guinea pigs relative to a murine model, the guinea pig is a valuable model for studying tick-borne and other pathogens that invade the skin. Here, we report a novel assay for assessing guinea pig leukocyte infiltration in the skin. Briefly, we developed an optimized six-color/eight-parameter polychromatic flow cytometric panel that combines enzymatic and mechanical dissociation of skin tissue with fluorescent antibody staining to allow for the immunophenotyping of guinea pig leukocytes that have migrated into the skin, resulting in inflammation. We designed this assay using a guinea pig model for tick-borne rickettsiosis to further investigate host-pathogen interactions in the skin, with preliminary data demonstrating immunophenotyping at skin lesions from infected ticks. We anticipate that future applications will include hypothesis testing to define the primary immune cell infiltrates responding to exposure to virulent, avirulent tick-borne rickettsiae, and tick-borne rickettsiae of unknown virulence. Other relevant applications include skin lesions resulting from other vector-borne pathogens, Staphylococcus aureus infection, and Buruli ulcer caused by Mycobacterium ulcerans.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36118291

RESUMEN

Chlorpyrifos (CPF) is an organophosphorus insecticide that has gained significant attention cue to the reported toxicity associated with developmental exposure. While the canonical mechanism of toxicity of CPF involves the inhibition of brain acetylcholinesterase (AChE), we have reported that exposure of juvenile rats to levels of CPF that do not yield any inhibition of brain AChE results in neurobehavioral alterations at later ages. However, it is unclear what effect exposure to these low levels of CPF has on blood esterase activities which are frequently used not only as biomarkers of exposure but also to set exposure levels in risk assessment. To determine this, male and female rat pups were exposed orally from postnatal day 10 to 16 to either corn oil (vehicle) or 0.5, 0.75, or 1.0 mg/kg CPF. At 12 h after the final exposure, serum cholinesterase (ChE), butyrylcholinesterase (BChE), and carboxylesterase (CES), and red blood cell (RBC) and brain AChE activities were determined. There were no differences between sexes in either the controls or individual treatments for all enzymes. Only the highest dosage of 1.0 mg/kg CPF yielded significant brain AChE inhibition (22-24%) but all dosages significantly inhibited the blood esterases with inhibition being highest with serum CES (65-85%) followed by serum BChE (57-76%), RBC AChE (35-65%), and then serum ChE (16-32%). Our data verify that blood esterases are inhibited at dosages of CPF that alter neurobehavioral performance in the absence of effects on brain AChE activity.

8.
Curr Protoc ; 2(11): e584, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36383032

RESUMEN

The guinea pig was the original animal model developed for investigating spotted fever rickettsiosis (SFR). This model system has persisted on account of the guinea pig's conduciveness to tick transmission of SFR agents and ability to recapitulate SFR in humans through clinical signs that include fever, unthriftiness, and in some cases the development of an eschar. The guinea pig is the smallest animal model for SFR that allows the collection of multiple blood and skin samples antemortem for longitudinal studies. This unit provides the basic protocols necessary to establish, maintain, and utilize a guinea pig-tick-Rickettsia model for monitoring the course of infection and immune response to an infection by spotted fever group Rickettsia (SFGR) that can be studied at biosafety level 2 (BSL-2) and arthropod containment level 2 (ACL-2); adaptations must be made for BSL-3 agents. The protocols cover methods for tick feeding and colony development, laboratory infection of ticks, tick transmission of Rickettsia to guinea pigs, and monitoring of the course of infection through clinical signs, rickettsial burden, and immune response. It should be feasible to adapt these methods to study other tick-borne pathogens. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tick transmission of SFGR to guinea pigs Support Protocol 1: Laboratory infection of ticks by injection Alternate Protocol 1: Needle inoculation of SFGR to guinea pigs Basic Protocol 2: Monitoring the course of guinea pig rickettsial infection: clinical signs Basic Protocol 3: Monitoring the course of guinea pig rickettsial infection: collection of biological specimens Support Protocol 2: Guinea pig anesthesia Basic Protocol 4: Monitoring rickettsial burden in guinea pigs by multiplex qPCR Basic Protocol 5: Monitoring guinea pig immune response to infection: blood leukocytes by flow cytometry Basic Protocol 6: Monitoring immune response to guinea pig rickettsial infection: leukocyte infiltration of skin at the tick bite site by flow cytometry Basic Protocol 7: Monitoring the immune response to guinea pig rickettsial infection: antibody titer by ELISA Support Protocol 4: Coating ELISA Plates Alternate Protocol 2: Monitoring immune response to guinea pig rickettsial infection: antibody titer by immunofluorescence assay.


Asunto(s)
Rickettsiosis Exantemáticas , Garrapatas , Animales , Cobayas , Humanos , Modelos Animales de Enfermedad , Inmunidad , Infección de Laboratorio , Rickettsia/fisiología , Rickettsiosis Exantemáticas/diagnóstico , Rickettsiosis Exantemáticas/inmunología , Garrapatas/microbiología
9.
Toxicology ; 480: 153317, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096317

RESUMEN

At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.


Asunto(s)
Cloropirifos , Insecticidas , Acetilcolina , Acetilcolinesterasa/metabolismo , Animales , Arildialquilfosfatasa , Carboxilesterasa/metabolismo , Cloropirifos/análogos & derivados , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Colinesterasas/metabolismo , Aceite de Maíz , Insecticidas/metabolismo , Insecticidas/toxicidad , Mamíferos/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley
10.
Neurotoxicology ; 85: 234-244, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34058248

RESUMEN

Chlorpyrifos (CPF) remains one of the most widely used organophosphorus insecticides (OPs) despite the concerns about its developmental neurotoxicity. Developmental exposure to CPF has long-lasting negative impacts, including abnormal emotional behaviors. These negative impacts are observed at exposure levels do not cause inhibition of acetylcholinesterase, the canonical target of OPs. Exposure to CPF at these levels inhibits the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) but it is not clear what the persistent effects of this inhibition are. To investigate this, male rat pups were exposed orally to either corn oil, 0.75 mg/kg CPF, or 0.02 mg/kg PF-04457845 (PF; a specific inhibitor of FAAH) daily from postnatal day 10 (PND10) - PND16. This dosage of CPF does not inhibit brain cholinesterase activity but inhibits FAAH activity. On PND38 (adolescence), the protein expression in the amygdala was determined using a label-free shotgun proteomic approach. The analysis of control vs CPF and control vs PF led to the identification of 44 and 142 differentially regulated proteins, respectively. Gene ontology enrichment analysis revealed that most of the proteins with altered expression in both CPF and PF treatment groups were localized in the synapse-related regions, such as presynaptic membrane, postsynaptic density, and synaptic vesicle. The different biological processes affected by both treatment groups included persistent synaptic potentiation, glutamate receptor signaling, protein phosphorylation, and chemical synaptic transmission. These results also indicated disturbances in the balance between glutamatergic (↓ Glutamate AMPA receptor 2, ↓ Excitatory amino acid transporter 2, and ↑ vesicular glutamate transporter 2) and GABAergic signaling (↑ GABA transporter 3 and ↑ glutamate decarboxylase 2). This imbalance could play a role in the abnormal emotional behavior that we have previously reported. These results suggest that there is a similar pattern of expression between CPF and PF, and both these chemicals can persistently alter emotional behavior as a consequence of inhibition of FAAH.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Cloropirifos/toxicidad , Ácido Glutámico/metabolismo , Proteómica/métodos , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Amígdala del Cerebelo/crecimiento & desarrollo , Animales , Inhibidores de la Colinesterasa/toxicidad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Pathogens ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498380

RESUMEN

Based on limited serological studies, at least 10% of the US population has been exposed to spotted fever group Rickettsia (SFGR) species. The immunofluorescence antibody assay (IFA) has been the gold standard for the serodiagnosis of rickettsial infections such as spotted fever rickettsiosis (SFR). However, the IFA is semi-quantitative and subjective, requiring a high level of expertise to interpret it correctly. Here, we developed an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of Rickettsia parkeri infection in the guinea pig. Our ELISA is an objective, quantitative, and high-throughput assay that shows greater sensitivity and resolution in observed titers than the IFA. We methodically optimized relevant parameters in sequence for optimal signal-to-noise ratio and low coefficient of variation% values. We used a guinea pig model as it is a part of our overall research efforts to understand the immunological and clinical response to SFGR species after tick transmission. Guinea pigs are a useful model to study SFR and show clinical signs of SFR, such as fever and eschars. We anticipate that this assay will be easily adapted to other hosts, including humans and other SFGR species.

12.
Neurotoxicology ; 77: 127-136, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31931040

RESUMEN

The organophosphorus insecticide chlorpyrifos (CPF) is suspected to cause developmental neurotoxicity in children leading to long term effects. Developmental exposure of rat pups to CPF at low levels disrupts degradation of the brain endocannabinoids through the inhibition of fatty acid amide hydrolase (FAAH) and decreases the reactivity of juvenile rats in an emergence test. In this study, we further investigated the effects of developmental CPF exposure on behavior but also included exposure to PF-04457845, a specific inhibitor of FAAH, for comparison of behavior altered by FAAH inhibition with behavior altered by CPF. Ten day old rat pups were exposed orally either to 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 daily for 7 days. In an open field (day 23), the high CPF and PF-04457845 groups exhibited increased motor activity but no differences in the time spent in the field's center. In an elevated plus maze (day 29), all treatment groups had increased open arm activity but ethological behaviors associated with anxiety were not altered. Behaviors in the maze associated with increased general activity and exploratory drive were increased. Social interactions (day 36) were measured and all treatment groups exhibited increased levels of play behavior. The similarities in behavior between PF-04457845 and CPF suggest that enhanced endocannabinoid signaling during the exposure period plays a role in the persistent alteration of behavior observed following developmental CPF exposure.


Asunto(s)
Amidohidrolasas/metabolismo , Conducta Animal/efectos de los fármacos , Cloropirifos/toxicidad , Conducta Exploratoria/efectos de los fármacos , Insecticidas/toxicidad , Conducta Social , Amidohidrolasas/antagonistas & inhibidores , Animales , Química Encefálica/efectos de los fármacos , Endocannabinoides/análisis , Femenino , Masculino , Prosencéfalo/efectos de los fármacos , Piridazinas/administración & dosificación , Ratas Sprague-Dawley , Urea/administración & dosificación , Urea/análogos & derivados
13.
Data Brief ; 27: 104589, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31673590

RESUMEN

This data article contains the proteomic and transcriptomic data of the amygdala of adolescent rats involved in social play compared to non-behavioural animals. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioural testing. The protein expression was measured by analysing trypsin digested protein samples using a LTQ Orbitrap Velos mass spectrometer equipped with an Advion nanomate ESI source. The obtained tandem mass spectra were extracted by Thermo Proteome Discoverer 1.3 and the data were displayed with Scaffold v 4.5.1. The transcriptomic data were generated by llumina HiSeq 4000 system. Cuffdiff (v2.2.1) program was used to calculate RNA-seq based gene expression levels. For further interpretation of data presented in this article, please see the research article 'Proteomic and Transcriptional Profiling of Rat Amygdala Following Social Play' (Alugubelly et al. 2019).

14.
Behav Brain Res ; 376: 112210, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31493430

RESUMEN

Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Juego e Implementos de Juego/psicología , Conducta Social , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/metabolismo , Dopamina/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Neurotransmisores/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Recompensa , Serotonina/metabolismo , Estrés Psicológico/metabolismo , Transcriptoma/genética
15.
Neurotoxicol Teratol ; 69: 11-20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29936119

RESUMEN

The gestational and adolescent periods are critically important for brain development and exposure to Δ9­tetrahydrocannabinol (Δ9-THC) during these periods results in long term behavioral and biochemical abnormalities in laboratory animals. However, recent reports indicate a dramatic rise in oral Δ9-THC exposure in young children but the effects of this exposure scenario have not been adequately investigated. Using a model designed to mimic childhood exposure, male and female rat pups were orally exposed to either corn oil or 10 mg/kg Δ9-THC daily from postnatal days 10-16. On day 29, rats were tested in the elevated plus maze under both low and high illumination with no differences in anxiety-related parameters observed between controls and treated rats. Under high but not low illumination, male Δ9-THC rats exhibited increased anxiolytic behavior as compared to female Δ9-THC rats suggesting a sexual dimorphic effect that was only observed under increased aversiveness. In addition, male Δ9-THC rats had increased activity levels as compared to control males. On day 38, social interactions were determined and both male and female Δ9-THC rats exhibited lower levels of social exploration behaviors but increased episodes of social play behaviors and increased time spent engaged in play. These data suggest that oral exposure to Δ9-THC during a period similar to childhood in humans can result in altered social behavior once adolescence is reached.


Asunto(s)
Ansiedad/inducido químicamente , Dronabinol/efectos adversos , Relaciones Interpersonales , Conducta Social , Factores de Edad , Animales , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ratas , Caracteres Sexuales
16.
PLoS One ; 10(8): e0135531, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267804

RESUMEN

Although protein ubiquitination has been shown to regulate multiple processes during host response to Salmonella enterica serovar Typhimurium infection, specific functions of host deubiquitinating enzymes remain unknown in this bacterial infection. By using chemical proteomics approach, in which deubiquitinating enzymes were labeled by an active-site probe and analyzed by quantitative proteomics, we identified novel deubiquitinases in chicken macrophages based on their reactivity with the probe. Also, we detected down-regulation of UCH-L3, and USP4 as well as up-regulation of USP5 and UCH-L5 deubiquitinating enzymes in macrophages infected with Salmonella Typhimurium. We showed that decrease in either UCH-L5 activity, or in UCH-L5 protein amount in chicken and human macrophages infected or stimulated with LPS/nigericin, led to decreased IL-1ß release. These data point towards a putative role of UCH-L5 in inflammasome regulation during Salmonella infection. Because inflammasome activation is important in innate resistance to these bacteria, one would expect that naturally occurring or therapeutically induced alteration in UCH-L5 activation would influence disease outcome and could represent a target for new therapeutic approaches.


Asunto(s)
Inflamasomas/metabolismo , Macrófagos/metabolismo , Proteómica/métodos , Animales , Línea Celular , Pollos , Humanos , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA