Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(21): 38405-38422, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258406

RESUMEN

Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales.

2.
Phys Rev Lett ; 122(13): 135101, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31012636

RESUMEN

Magnetic energy (ME) and kinetic energy (KE) in ideal incompressible magnetohydrodynamics are not global invariants and, therefore, it has been justified to discuss only the cascade of their sum total energy. We provide a physical argument based on scale locality, along with compelling evidence that ME and KE budgets statistically decouple beyond a transitional "conversion" range. This arises because magnetic field-line stretching is a large-scale process which vanishes on average at intermediate and small scales within the inertial-inductive range, thereby allowing each of the mean ME and KE to cascade conservatively and at an equal rate, yielding a turbulent magnetic Prandtl number of unity over these scales.

3.
Nature ; 497(7450): 466-9, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23698445

RESUMEN

The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.

4.
Sci Adv ; 9(51): eadi7420, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117888

RESUMEN

Here, we present an estimate for the ocean's global scale transfer of kinetic energy (KE), across scales from 10 to 40,000 km. Oceanic KE transfer between gyre scales and mesoscales is induced by the atmosphere's Hadley, Ferrel, and polar cells, and the intertropical convergence zone induces an intense downscale KE transfer. Upscale transfer peaks at 300 gigawatts across mesoscales of 120 km in size, roughly one-third the energy input by winds into the oceanic general circulation. Nearly three quarters of this "cascade" occurs south of 15°S and penetrates almost the entire water column. The mesoscale cascade has a self-similar seasonal cycle with characteristic lag time of ≈27 days per octave of length scales; transfer across 50 km peaks in spring, while transfer across 500 km peaks in summer. KE of those mesoscales follows the same cycle but peaks ≈40 days after the peak cascade, suggesting that energy transferred across a scale is primarily deposited at a scale four times larger.

5.
Nat Commun ; 13(1): 5314, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085140

RESUMEN

Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies [Formula: see text] km in size, which are the ocean's analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean's spatial scales has been derived mostly from Fourier analysis in small "representative" regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 104 km, and a previously unobserved power-law scaling over scales larger than 103 km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 102 km peaks in spring while KE at 103 km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth's climate system, including the largest planetary scales.

6.
Rev Sci Instrum ; 93(10): 103502, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319339

RESUMEN

Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets' geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.

7.
Phys Rev Lett ; 106(17): 174502, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21635038

RESUMEN

We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a conservative fashion despite not being an invariant.

8.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34233876

RESUMEN

Wind is the primary driver of the oceanic general circulation, yet the length scales at which this energy transfer occurs are unknown. Using satellite data and a recent method to disentangle multiscale processes, we find that wind deposits kinetic energy into the geostrophic ocean flow only at scales larger than 260 km, on a global average. We show that wind removes energy from scales smaller than 260 km at an average rate of -50 GW, a process known as eddy killing. To our knowledge, this is the first objective determination of the global eddy killing scale. We find that eddy killing is taking place at almost all times but with seasonal variability, peaking in winter, and it removes a substantial fraction (up to 90%) of the wind power input in western boundary currents. This process, often overlooked in analyses and models, is a major dissipation pathway for mesoscales, the ocean's most energetic scales.

9.
Phys Rev Lett ; 104(8): 081101, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366924

RESUMEN

We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA