Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 134 Pt B: 360-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27555232

RESUMEN

The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.


Asunto(s)
Habituación Psicofisiológica/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Reflejo/fisiología , Pez Cebra/fisiología , Animales , Larva , Proteínas de Pez Cebra
2.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508370

RESUMEN

Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Compuestos de Bencidrilo/toxicidad , Humanos , Larva , Percepción , Fenoles
3.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33004417

RESUMEN

Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.


Asunto(s)
Memoria , Pez Cebra , Animales , Animales Modificados Genéticamente , Larva , Locomoción
4.
PLoS One ; 14(4): e0214374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30946762

RESUMEN

Zebrafish larvae have several biological features that make them useful for cellular investigations of the mechanisms underlying learning and memory. Of particular interest in this regard is a rapid escape, or startle, reflex possessed by zebrafish larvae; this reflex, the C-start, is mediated by a relatively simple neuronal circuit and exhibits habituation, a non-associative form of learning. Here we demonstrate a rapid form of habituation of the C-start to touch that resembles the previously reported rapid habituation induced by auditory or vibrational stimuli. We also show that touch-induced habituation exhibits input specificity. This work sets the stage for in vivo optical investigations of the cellular sites of plasticity that mediate habituation of the C-start in the larval zebrafish.


Asunto(s)
Reacción de Fuga/fisiología , Habituación Psicofisiológica , Tacto/fisiología , Pez Cebra/fisiología , Animales , Electrochoque , Reacción de Fuga/efectos de los fármacos , Glicina/farmacología , Habituación Psicofisiológica/efectos de los fármacos , Cabeza , Larva/efectos de los fármacos , Larva/fisiología , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Estricnina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA