Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Oral Health ; 2: 722495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048045

RESUMEN

Inflammation is a driven force in modulating microbial communities, but little is known about the interplay between colonizing microorganisms and the immune response in periodontitis. Since local and systemic inflammation may play a whole role in disease, we aimed to evaluate the oral and fecal microbiome of patients with periodontitis and to correlate the oral microbiome data with levels of inflammatory mediator in saliva. Methods: Nine patients with periodontitis (P) in Stage 3/Grade B and nine age-matched non-affected controls (H) were evaluated. Microbial communities of oral biofilms (the supra and subgingival from affected and non-affected sites) and feces were determined by sequencing analysis of the 16SrRNA V3-V4 region. Salivary levels of 40 chemokines and cytokines were correlated with oral microbiome data. Results: Supragingival microbial communities of P differed from H (Pielou's evenness index, and Beta diversity, and weighted UniFrac), since relative abundance (RA) of Defluviitaleaceae, Desulfobulbaceae, Mycoplasmataceae, Peptostreococcales-Tissierellales, and Campylobacteraceae was higher in P, whereas Muribaculaceae and Streptococcaceae were more abundant in H. Subgingival non-affected sites of P did not differ from H, except for a lower abundance of Gemellaceae. The microbiome of affected periodontitis sites (PD ≥ 4 mm) clustered apart from the subgingival sites of H. Oral pathobionts was more abundant in sub and supragingival biofilms of P than H. Fecal samples of P were enriched with Acidaminococcus, Clostridium, Lactobacillus, Bifidobacterium, Megasphaera, and Romboutsia when compared to H. The salivary levels of interleukin 6 (IL-6) and inflammatory chemokines were positively correlated with the RA of several recognized and putative pathobionts, whereas the RA of beneficial species, such as Rothia aeria and Haemophilus parainfluenzae was negatively correlated with the levels of Chemokine C-C motif Ligand 2 (CCL2), which is considered protective. Dysbiosis in patients with periodontitis was not restricted to periodontal pockets but was also seen in the supragingival and subgingival non-affected sites and feces. Subgingival dysbiosis revealed microbial signatures characteristic of different immune profiles, suggesting a role for candidate pathogens and beneficial organisms in the inflammatory process of periodontitis.

2.
Front Cell Infect Microbiol ; 10: 583761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117737

RESUMEN

In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.


Asunto(s)
Microbiota , Periodontitis , Aggregatibacter actinomycetemcomitans , Desulfovibrio , Erysipelothrix , Heces , Humanos , Incisivo , Diente Molar , Peptostreptococcus , ARN Ribosómico 16S/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-32974213

RESUMEN

Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi. Cardiomyopathy and damage to gastrointestinal tissue are the main disease manifestations. There are data suggesting that the immune response to T. cruzi depends on the intestinal microbiota. We hypothesized that Chagas disease is associated with an altered gut microbiome and that these changes are related to the disease phenotype. The stool microbiome from 104 individuals, 73 with Chagas disease (30 with the cardiac, 11 with the digestive, and 32 with the indeterminate form), and 31 healthy controls was characterized using 16S rRNA amplification and sequencing. The QIIME (Quantitative Insights Into Microbial Ecology) platform was used to analyze the data. Alpha and beta diversity indexes did not indicate differences between the groups. However, the relative abundance of Verrucomicrobia, represented primarily by the genus Akkermansia, was significantly lower in the Chagas disease groups, especially the cardiac group, compared to the controls. Furthermore, differences in the relative abundances of Alistipes, Bilophila, and Dialister were observed between the groups. We conclude that T. cruzi infection results in changes in the gut microbiome that may play a role in the myocardial and intestinal inflammation seen in Chagas disease.


Asunto(s)
Enfermedad de Chagas , Microbioma Gastrointestinal , Trypanosoma cruzi , Disbiosis , Heces , Humanos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA