Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 559(7712): 54-60, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925946

RESUMEN

Heterochromatin mainly comprises repeated DNA sequences that are prone to ectopic recombination. In Drosophila cells, 'safe' repair of heterochromatic double-strand breaks by homologous recombination relies on the relocalization of repair sites to the nuclear periphery before strand invasion. The mechanisms responsible for this movement were unknown. Here we show that relocalization occurs by directed motion along nuclear actin filaments assembled at repair sites by the Arp2/3 complex. Relocalization requires nuclear myosins associated with the heterochromatin repair complex Smc5/6 and the myosin activator Unc45, which is recruited to repair sites by Smc5/6. ARP2/3, actin nucleation and myosins also relocalize heterochromatic double-strand breaks in mouse cells. Defects in this pathway result in impaired heterochromatin repair and chromosome rearrangements. These findings identify de novo nuclear actin filaments and myosins as effectors of chromatin dynamics for heterochromatin repair and stability in multicellular eukaryotes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Heterocromatina/metabolismo , Movimiento , Miosinas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Heterocromatina/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Chaperonas Moleculares , Reparación del ADN por Recombinación
2.
Trends Genet ; 33(2): 86-100, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28104289

RESUMEN

Repairing double-strand breaks (DSBs) is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. Recent studies in Drosophila cells revealed that faithful homologous recombination (HR) repair of heterochromatic DSBs relies on the relocalization of DSBs to the nuclear periphery before Rad51 recruitment. We summarize here the exciting progress in understanding this pathway, including conserved responses in mammalian cells and surprising similarities with mechanisms in yeast that deal with DSBs in distinct sites that are difficult to repair, including other repeated sequences. We will also point out some of the most important open questions in the field and emerging evidence suggesting that deregulating these pathways might have dramatic consequences for human health.


Asunto(s)
Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Heterocromatina/genética , Animales , Drosophila/genética , Humanos , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/genética
3.
Hum Mutat ; 39(9): 1214-1225, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29900613

RESUMEN

The causal association of NUDT1 (=MTH1) and OGG1 with hereditary colorectal cancer (CRC) remains unclear. Here, we sought to provide additional evidence for or against the causal contribution of NUDT1 and OGG1 mutations to hereditary CRC and/or polyposis. Mutational screening was performed using pooled DNA amplification and targeted next-generation sequencing in 529 families (441 uncharacterized MMR-proficient familial nonpolyposis CRC and 88 polyposis cases). Cosegregation, in silico analyses, in vitro functional assays, and case-control associations were carried out to characterize the identified variants. Five heterozygous carriers of novel (n = 1) or rare (n = 4) NUDT1 variants were identified. In vitro deleterious effects were demonstrated for c.143G>A p.G48E (catalytic activity and protein stability) and c.403G>T p.G135W (protein stability), although cosegregation data in the carrier families were inconclusive or nonsupportive. The frequency of missense, loss-of-function, and splice-site NUDT1 variants in our familial CRC cohort was similar to the one observed in cancer-free individuals, suggesting lack of association with CRC predisposition. No OGG1 pathogenic mutations were identified. Our results suggest that the contribution of NUDT1 and OGG1 germline mutations to hereditary CRC and to polyposis is inexistent or, at most, negligible. The inclusion of these genes in routine genetic testing is not recommended.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , ADN Glicosilasas/genética , Enzimas Reparadoras del ADN/genética , Monoéster Fosfórico Hidrolasas/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación del ADN/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genotipo , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense/genética , Estrés Oxidativo , Isoformas de Proteínas/genética
4.
Glia ; 63(7): 1155-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25731761

RESUMEN

Cellular migration and differentiation are important developmental processes that require dynamic cellular adhesion. Integrins are heterodimeric transmembrane receptors that play key roles in adhesion plasticity. Here, we explore the developing visual system of Drosophila to study the roles of integrin heterodimers in glia development. Our data show that αPS2 is essential for retinal glia migration from the brain into the eye disc and that glial cells have a role in the maintenance of the fenestrated membrane (Laminin-rich ECM layer) in the disc. Interestingly, the absence of glial cells in the eye disc did not affect the targeting of retinal axons to the optic stalk. In contrast, αPS3 is not required for retinal glia migration, but together with Talin, it functions in glial cells to allow photoreceptor axons to target the optic stalk. Thus, we present evidence that αPS2 and αPS3 integrin have different and specific functions in the development of retinal glia.


Asunto(s)
Comunicación Celular/fisiología , Proteínas de Drosophila/metabolismo , Cadenas alfa de Integrinas/metabolismo , Neuroglía/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Animales , Animales Modificados Genéticamente , Axones/fisiología , Drosophila , Proteínas de Drosophila/genética , Inmunohistoquímica , Cadenas alfa de Integrinas/genética , Microscopía Electrónica de Transmisión , Interferencia de ARN , Talina/metabolismo
5.
Cancer Res ; 80(17): 3530-3541, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32312836

RESUMEN

Reactive oxygen species (ROS) oxidize nucleotide triphosphate pools (e.g., 8-oxodGTP), which may kill cells if incorporated into DNA. Whether cancers avoid poisoning from oxidized nucleotides by preventing incorporation via the oxidized purine diphosphatase MTH1 remains under debate. Also, little is known about DNA polymerases incorporating oxidized nucleotides in cells or how oxidized nucleotides in DNA become toxic. Here we show that replacement of one of the main DNA replicases in human cells, DNA polymerase delta (Pol δ), with an error-prone variant allows increased 8-oxodG accumulation into DNA following treatment with TH588, a dual MTH1 inhibitor and microtubule targeting agent. The resulting elevated genomic 8-oxodG correlated with increased cytotoxicity of TH588. Interestingly, no substantial perturbation of replication fork progression was observed, but rather mitotic progression was impaired and mitotic DNA synthesis triggered. Reducing mitotic arrest by reversin treatment prevented accumulation of genomic 8-oxodG and reduced cytotoxicity of TH588, in line with the notion that mitotic arrest is required for ROS buildup and oxidation of the nucleotide pool. Furthermore, delayed mitosis and increased mitotic cell death was observed following TH588 treatment in cells expressing the error-prone but not wild-type Pol δ variant, which is not observed following treatments with antimitotic agents. Collectively, these results link accumulation of genomic oxidized nucleotides with disturbed mitotic progression. SIGNIFICANCE: These findings uncover a novel link between accumulation of genomic 8-oxodG and perturbed mitotic progression in cancer cells, which can be exploited therapeutically using MTH1 inhibitors.See related commentary by Alnajjar and Sweasy, p. 3459.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Monoéster Fosfórico Hidrolasas , Enzimas Reparadoras del ADN/genética , Genómica , Humanos , Mitosis/genética , Monoéster Fosfórico Hidrolasas/genética , Pirimidinas/farmacología
6.
Nat Cell Biol ; 18(5): 516-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27111841

RESUMEN

Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.


Asunto(s)
Anafase , Aurora Quinasas/metabolismo , Puntos de Control del Ciclo Celular , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Actomiosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Anafase/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Hidroxiurea/farmacología , Viabilidad Microbiana/efectos de los fármacos , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA