RESUMEN
Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.
Asunto(s)
Elementos Alu , ARN Helicasas DEAD-box/metabolismo , Atrofia Geográfica/inmunología , Atrofia Geográfica/patología , Inflamasomas/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/metabolismo , Animales , Proteínas Portadoras/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Epitelio Pigmentado de la Retina/patología , Receptores Toll-Like/metabolismoRESUMEN
Retrotransposable elements are deleterious at many levels, and the failure of host surveillance systems for these elements can thus have negative consequences. However, the contribution of retrotransposon activity to ageing and age-associated diseases is not known. Here we show that during cellular senescence, L1 (also known as LINE-1) retrotransposable elements become transcriptionally derepressed and activate a type-I interferon (IFN-I) response. The IFN-I response is a phenotype of late senescence and contributes to the maintenance of the senescence-associated secretory phenotype. The IFN-I response is triggered by cytoplasmic L1 cDNA, and is antagonized by inhibitors of the L1 reverse transcriptase. Treatment of aged mice with the nucleoside reverse transcriptase inhibitor lamivudine downregulated IFN-I activation and age-associated inflammation (inflammaging) in several tissues. We propose that the activation of retrotransposons is an important component of sterile inflammation that is a hallmark of ageing, and that L1 reverse transcriptase is a relevant target for the treatment of age-associated disorders.
Asunto(s)
Senescencia Celular/genética , Inflamación/genética , Interferón Tipo I/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Regulación hacia Abajo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inflamación/patología , Lamivudine/farmacología , Masculino , Ratones , Fenotipo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacologíaRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullinationâ targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved. After laser injury, GFAP polymers that accumulate in reactive MG are citrullinated in MG endfeet and glial cell processes. The enzyme responsible for citrullination, peptidyl arginine deiminase-4 (PAD4), localizes to endfeet and associates with GFAP polymers. Glial cell-specific PAD4 deficiency attenuates retinal hypercitrullination in injured retinas, indicating PAD4 requirement for MG citrullination. In retinas of 1-mo-old JR5558 mice, hypercitrullinated GFAP and PAD4 accumulate in MG endfeet/cell processes in a lesion-specific manner. Finally, we show that human donor maculae from patients with wet-AMD also feature the canonical endfeet localization of hypercitrullinated GFAP. Thus, we propose that endfeet are a "citrullination bunker" that initiates and sustains citrullination in retinal degeneration.
Asunto(s)
Citrulinación , Gliosis/metabolismo , Neuroglía/metabolismo , Degeneración Retiniana/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Macular Húmeda/metabolismoRESUMEN
Inflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV. Here, we report that the simultaneous introduction of any of several disease-relevant inflammasome agonists (Alu or B2 RNA, Alu cDNA, or oligomerized amyloid ß (1-40)) exacerbates laser-induced CNV. These activities were diminished or abrogated by genetic or pharmacological targeting of inflammasome signaling constituents including P2rx7, Nlrp3, caspase-1, caspase-11, and Myd88, as well as in myeloid-specific caspase-1 knockout mice. Alu RNA treatment induced inflammasome activation in macrophages within the CNV lesion, and increased accumulation of macrophages in an inflammasome-dependent manner. Finally, IL-1ß neutralization prevented inflammasome agonist-induced chemotaxis, macrophage trafficking, and angiogenesis. Collectively, these observations support a model wherein inflammasome stimulation promotes and exacerbates CNV and may be a therapeutic target for diseases of angiogenesis such as neovascular AMD.
RESUMEN
Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/irrigación sanguínea , Ribonucleasa III/metabolismo , Animales , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/fisiopatología , ARN Helicasas DEAD-box/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Degeneración Macular/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/parasitología , Neovascularización Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Ribonucleasa III/genéticaRESUMEN
Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.
Asunto(s)
Elementos Alu/genética , ARN Helicasas DEAD-box/deficiencia , Degeneración Macular/genética , Degeneración Macular/patología , ARN/genética , ARN/metabolismo , Ribonucleasa III/deficiencia , Animales , Muerte Celular , Supervivencia Celular , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , MicroARNs/metabolismo , Datos de Secuencia Molecular , Oligonucleótidos Antisentido , Fenotipo , Epitelio Pigmentado de la Retina/enzimología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Ribonucleasa III/genética , Ribonucleasa III/metabolismoRESUMEN
Age-related macular degeneration (AMD), the most common form of irreversible blindness in the industrially developed world, can present years before a patient begins to lose vision. For most of these patients, AMD never progresses past its early stages to the advanced forms that are principally responsible for the vast majority of vision loss. Advanced AMD can manifest as either an advanced avascular form known as geographic atrophy (GA) marked by regional retinal pigment epithelium (RPE) cell death or as an advanced form known as neovascular AMD marked by the intrusion of fragile new blood vessels into the normally avascular retina. Physicians have several therapeutic interventions available to combat neovascular AMD, but GA has no approved effective therapies as of yet. In this chapter, we will discuss the current strategies for limiting dry AMD in patients. We will also discuss previous attempts at pharmacological intervention that were tested in a clinical setting and consider reasons why these putative therapeutics did not perform successfully in large-scale trials. Despite the number of unsuccessful past trials, new pharmacological interventions may succeed. These future therapies may aid millions of AMD patients worldwide.
Asunto(s)
Degeneración Macular/tratamiento farmacológico , Ensayos Clínicos como Asunto , Atrofia Geográfica/tratamiento farmacológico , Humanos , Epitelio Pigmentado de la Retina/patologíaRESUMEN
Geographic atrophy, an advanced form of age-related macular degeneration (AMD) characterized by death of the retinal pigmented epithelium (RPE), causes untreatable blindness in millions worldwide. The RPE of human eyes with geographic atrophy accumulates toxic Alu RNA in response to a deficit in the enzyme DICER1, which in turn leads to activation of the NLRP3 inflammasome and elaboration of IL-18. Despite these recent insights, it is still unclear how RPE cells die during the course of the disease. In this study, we implicate the involvement of Caspase-8 as a critical mediator of RPE degeneration. Here we show that DICER1 deficiency, Alu RNA accumulation, and IL-18 up-regulation lead to RPE cell death via activation of Caspase-8 through a Fas ligand-dependent mechanism. Coupled with our observation of increased Caspase-8 expression in the RPE of human eyes with geographic atrophy, our findings provide a rationale for targeting this apoptotic pathway in this disease.
Asunto(s)
Elementos Alu , Apoptosis , Caspasa 8/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas del Ojo/metabolismo , Degeneración Macular/metabolismo , ARN/metabolismo , Ribonucleasa III/metabolismo , Animales , Caspasa 8/genética , ARN Helicasas DEAD-box/genética , Proteínas del Ojo/genética , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Degeneración Macular/patología , Ratones , Ratones Noqueados , ARN/genética , Ribonucleasa III/genética , Regulación hacia Arriba/genéticaRESUMEN
Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.
Asunto(s)
Degeneración Macular/diagnóstico , Degeneración Macular/terapia , Receptores CCR3/antagonistas & inhibidores , Receptores CCR3/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Quimiocina CCL11/antagonistas & inhibidores , Quimiocina CCL11/metabolismo , Quimiocina CCL24/antagonistas & inhibidores , Quimiocina CCL24/metabolismo , Quimiocina CCL26 , Quimiocinas CC/antagonistas & inhibidores , Quimiocinas CC/metabolismo , Coroides/irrigación sanguínea , Coroides/citología , Coroides/metabolismo , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Inflamación , Leucocitos , Ligandos , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos C57BL , Puntos Cuánticos , Receptores CCR3/análisis , Receptores CCR3/genética , Receptores CCR3/inmunología , Retina/efectos de los fármacos , Retina/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/inmunologíaRESUMEN
Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.
Asunto(s)
Regulación Enzimológica de la Expresión Génica , Degeneración Macular/enzimología , Degeneración Macular/terapia , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Animales , ARN Helicasas DEAD-box/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Humanos , Ratones , Fosforilación , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/metabolismo , Transducción de SeñalRESUMEN
The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5' splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.
Asunto(s)
Linfangiogénesis/genética , Morfolinos/genética , Neovascularización Fisiológica/genética , Empalme del ARN , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Secuencia de Bases , Trasplante de Córnea , Cartilla de ADN , Exones , Humanos , Etiquetado Corte-Fin in Situ , Ratones , Microscopía Electrónica de RastreoRESUMEN
Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-alpha/beta activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-gamma and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.
Asunto(s)
Terapia Genética/métodos , Inmunidad Innata/inmunología , Neovascularización Patológica/inmunología , Neovascularización Patológica/prevención & control , ARN Interferente Pequeño/inmunología , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Línea Celular , Células Endoteliales/metabolismo , Humanos , Interferón gamma/inmunología , Interleucina-12/inmunología , Degeneración Macular/complicaciones , Degeneración Macular/genética , Degeneración Macular/terapia , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/terapia , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Receptor Toll-Like 3/química , Receptor Toll-Like 3/genética , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Cisplatin use is often limited by its ototoxic side effects, which can lead to irreversible hearing loss. Preventing cisplatin-induced ototoxicity is crucial to improve patient outcomes. Fluoxetine and fluvoxamine, both selective serotonin reuptake inhibitors antidepressants, inhibit the NLR pyrin domain-containing protein 3 inflammasome, a potential therapeutic target for preventing ototoxicity. However, human studies have not evaluated if these antidepressants may protect against cisplatin-induced ototoxicity. The object of this study is to assess the association between fluoxetine or fluvoxamine use and incidence of hearing loss or tinnitus in a large cohort of patients receiving cisplatin chemotherapy. We use a retrospective cohort study within the U.S. Department of Veterans Affairs healthcare system. Adult patients with cancer who received cisplatin chemotherapy between 2000 and 2023 are included. Incidence of ototoxicity, defined by international classification of diseases revision 9-CM or international classification of diseases revision 10-CM diagnoses of hearing loss or tinnitus is compared between concurrent use of fluoxetine or fluvoxamine and cisplatin alone. A total of 20,552 patients were included. Of those, 489 received cisplatin and fluoxetine or fluvoxamine. After propensity score adjustment, the hazard of ototoxicity was lower in the group receiving fluoxetine or fluvoxamine compared to the group receiving cisplatin alone (HR = 0.62, 95% CI = (0.41-0.94)). Fluoxetine or fluvoxamine use may be associated with a reduced risk of cisplatin-induced ototoxicity. Randomized clinical trials are needed to confirm these findings and establish the efficacy of the medications in ototoxicity prevention. Further research is also warranted to investigate the potential mechanisms underlying this protective effect.
Asunto(s)
Cisplatino , Fluoxetina , Fluvoxamina , Pérdida Auditiva , Acúfeno , Humanos , Cisplatino/efectos adversos , Pérdida Auditiva/inducido químicamente , Estudios Retrospectivos , Masculino , Acúfeno/inducido químicamente , Femenino , Fluoxetina/efectos adversos , Fluoxetina/uso terapéutico , Persona de Mediana Edad , Fluvoxamina/efectos adversos , Fluvoxamina/uso terapéutico , AncianoRESUMEN
Importance: Age-related macular degeneration (AMD) is a serious and common ophthalmologic disorder that is hypothesized to result, in part, from inflammatory reactions in the macula. Alzheimer disease (AD) treatment, acetylcholinesterase inhibitors (AChEIs), have anti-inflammatory effects and it remains unclear if they modify the risk of AMD. Objective: To investigate the association between AChEI medications and the incidence of AMD. Design, Setting, and Participants: This propensity score-matched retrospective cohort study took place at health care facilities within the US Department of Veterans Affairs (VA) health care system from January 2000 through September 2023. Participants included patients diagnosed with AD between ages 55 and 80 years with no preexisting diagnosis of AMD in the VA database. Exposure: AChEIs prescription dispensed as pharmacologic treatments for AD. Main Outcomes and Measure: The first diagnosis of AMD. Results: A total of 21â¯823 veterans with AD (mean [SD] age, 72.3 [6.1] years; 21â¯313 male participants [97.7%] and 510 female participants [2.3%]) were included. Propensity score-matched Cox model reveals each additional year of AChEI treatment was associated with a 6% lower hazard of AMD (hazard ratio, 0.94; 95% CI, (0.89-0.99). Conclusions and Relevance: This observational study reports a small reduction in the risk of AMD among veterans with AD receiving AChEIs. Randomized clinical trials would be needed to determine if there is a cause-and-effect relationship and further research is required to validate these findings across diverse populations.
Asunto(s)
Enfermedad de Alzheimer , Degeneración Macular , Humanos , Masculino , Femenino , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/epidemiología , Inhibidores de la Colinesterasa/uso terapéutico , Acetilcolinesterasa/uso terapéutico , Estudios Retrospectivos , Degeneración Macular/diagnóstico , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/epidemiologíaRESUMEN
Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining sub-therapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.
Asunto(s)
Neovascularización Coroidal , Modelos Animales de Enfermedad , Telomerasa , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Telomerasa/metabolismo , Animales , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratones Endogámicos C57BL , Aminobenzoatos/farmacología , ARN/genética , ARN/metabolismo , Oligonucleótidos Antisentido/farmacología , NaftalenosRESUMEN
Inflammation plays a crucial role in cancer progression, but the relevance of the inflammasome remains unclear. Alu RNA was the first endogenous nucleic acid shown to activate the NLRP3 (nucleotide-binding domain leucine-rich repeat containing 3) inflammasome. Here, we showed that Alu RNA can induce epithelial-to-mesenchymal transition (EMT) through NLRP3 inflammasome activation and IL-1ß release in colorectal cancer (CRC) cells. Alu RNA is stored, transported and transferred to CRC cells by exosomes. Exosomal Alu RNA promotes tumorigenesis by inducing invasion, metastasis and EMT via NLRP3 inflammasome activation. Consistent with these data, we found that significantly increased Alu RNA expression correlates with the induction of NLRP3 priming in human CRC patients. Furthermore, the level of Alu RNA in circulating exosomes correlates with CRC progression in a preclinical model. These findings reveal the direct involvement of Alu RNA in cancer pathogenesis, and its presence in CRC cell-derived exosomes could be used as a noninvasive diagnostic biomarker.
Asunto(s)
Neoplasias Colorrectales , Exosomas , Humanos , ARN/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismoRESUMEN
The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.
Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , ARN Interferente Pequeño/toxicidad , Degeneración Retiniana/inducido químicamente , Receptor Toll-Like 3/metabolismo , Animales , Caspasa 3/metabolismo , Muerte Celular/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , ARN Interferente Pequeño/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo , Transducción de SeñalRESUMEN
Unreliable protein-based tools are impeding sex-based research.
Asunto(s)
Investigación Biomédica , Cromosomas Humanos Y , Enfermedad , Genes Ligados a Y , Caracteres Sexuales , Femenino , Humanos , Diferenciación Sexual , Cromosomas Humanos Y/genética , Enfermedad/genética , Salud , Especificidad de Órganos , Proteínas/genéticaRESUMEN
BACKGROUND: By inhibiting xanthine oxidase, subsequent inflammatory cytokine release and the resulting breakdown of the blood-retina barrier, allopurinol may limit the inflammation-driving diabetic macular edema (DME). METHODS: We examined the relationship between allopurinol and DME among type 2 diabetic United States veterans using a retrospective cohort study. We used propensity score matching and Cox hazard models to estimate the risk of DME. RESULTS: Propensity score-matched Cox models revealed allopurinol was associated with a 24.6% reduction in the risk of DME (HR = 0.754; 95% CI = (0.684-0.831)). CONCLUSION: Allopurinol could reduce the risk of DME, one of the major causes of visual disturbance among diabetic patients. Further research into the effects of allopurinol on DME is warranted.