Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(4): e25590, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370246

RESUMEN

The growing microbial resistance against antibiotics and the development of resistant strains has shifted the interests of many scientists to focus on metallic nanoparticle applications. Although several metal oxide nanoparticles have been synthesized using green route approach to measure their antimicrobial activity, there has been little or no literature on the use of Eucalyptus robusta Smith aqueous leaf extract mediated zinc oxide nanoparticles (ZnONPs). The study therefore examined the effect of two morphological nanostructures of Eucalyptus robusta Sm mediated ZnONPs and their antimicrobial and antifungal potential on some selected pathogens using disc diffusion method. The samples were characterized using Scanning and Transmission Electron Microscopy, Energy-Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy. From the results, the two ZnO samples were agglomerated with zinc oxide nanocrystalline structure sample calcined at 400 °C (ZnO NS400) been spherical in shape while zinc oxide nanocrystalline structure sample calcined at 60 °C (ZnO NS60) was rod-like. The sample calcined at higher temperature recorded the smallest particle size of 49.16 ± 1.6 nm as compared to the low temperature calcined sample of 51.04 ± 17.5 nm. It is obvious from the results that, ZnO NS400 exhibited better antibacterial and antifungal activity than ZnO NS60. Out of the different bacterial and fungal strains, ZnO NS400 sample showed an enhanced activity against S. aureus (17.2 ± 0.1 mm) bacterial strain and C. albicans (15.7 ± 0.1 mm) fungal strain at 50 mg/ml. Since this sample showed higher antimicrobial and antifungal activity, it may be explored for its applications in some fields including medicine, agriculture, and aquaculture industry in combating some of the pathogens that has been a worry to the sector. Notwithstanding, the study also provides valuable insights for future studies aiming to explore the antimicrobial potential of other plant extracts mediated zinc oxide nanostructures.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38430709

RESUMEN

Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.


Asunto(s)
Gastrópodos , Estrés Salino , Transducción de Señal , Animales , Gastrópodos/genética , Gastrópodos/fisiología , Gastrópodos/metabolismo , Transcriptoma
3.
Aquat Toxicol ; 274: 107049, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39159590

RESUMEN

In this study, the impact of ammonia nitrogen stress on juvenile four-finger threadfin in pond culture was examined. The 96-hour median lethal concentration (LC50-96h) and safe concentration of ammonia nitrogen were assessed in juveniles with a body weight of 7.4 ± 0.6 g using ecotoxicological methods. The study design included a stress group exposed to LC50-96h levels of ammonia nitrogen and a control group without ammonia nitrogen exposure. To examine the physiological, biochemical, and metabolic effects of ammonia nitrogen on gill tissue, gill tissue samples were collected after 12, 24, 48, and 96 h of stress, with a resumption of treatment after 48 h. Compared to the control group, ammonia nitrogen adversely affected juvenile four-finger threadfin, with LC50-96h and safe concentration values of 20.70 mg/L and 2.07 mg/L, respectively. Exposure to ammonia nitrogen resulted in substantial gill damage, including fusion of lamellae, epithelial cell loss, and proliferation of chlorine-secreting cells. This tissue damage persisted even after a 48-h recovery period. Ammonia nitrogen stress triggered an increase in antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione peroxidase) and malondialdehyde levels in gills, indicating oxidative stress from 12 h onwards. Although enzyme activity decreased over time, oxidative stress persisted even after recovery, suggesting an ongoing need for antioxidant defense. Metabolomics analysis showed significant alterations in 423 metabolites under ammonia nitrogen stress. Key metabolites such as L-arginine, taurine, 20-hydroxyarachidonic acid, 11,12-dihydroxy-5Z, 8Z, and 14Z eicosotrienic acid followed an increasing trend; uridine, adenosine, L-glutathione, and thymidine 5'-triphosphate followed a decreasing trend. These changes reflect metabolic adaptations to stress. In enriched metabolic pathways, the main differential pathways are membrane transport, lipid metabolism, and amino acid metabolism. After 48 h, significant differences were observed in 396 metabolites compared to the control group. Notably, L-arginine, choline, and L-histidine increased, while linoleic acid, adenosine, and glutathione decreased. Amino acid and lipid metabolism pathways were key affected pathways. Under ammonia nitrogen stress, juvenile four-finger threadfin increased the synthesis of unsaturated and saturated fatty acids to cope with low temperatures and bolster immune function by consuming spermidine. This adaptation helps to clear peroxides generated during fatty acid synthesis, thereby protecting cells from oxidative damage. This study provides insights for pond aquaculture and breeding of ammonia nitrogen-tolerant fish strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA