Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Childs Nerv Syst ; 37(3): 903-911, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33123821

RESUMEN

BACKGROUND: The non-homogenous flow of the cerebrospinal fluid within the ventricular catheter is one of the causative factors in shunt obstructions during the treatment of hydrocephalus. Previously, we studied the flow in ventricular catheters under the steady and pulsatile boundary conditions by means of computational fluid dynamics (CFD) in three-dimensional paradigms. Subsequently, several catheter designs with homogeneous flow patterns were developed out of which one prototype was chosen after a validation study. OBJECTIVE: To test the effectiveness of the flow ventricular catheter in a prospective, multicenter, comparative study. METHODS: Eligible centers were three pediatric hospitals: two with sole adult practice and one a mixed pediatric-adult. Standard silicone material was used to develop a parametric catheter model with homogenous flow characteristics. The flow catheters were inserted in pediatric (n = 30) and adult (n = 10) patients with all types of hydrocephalus. Simultaneously, regular ventricular catheters were inserted in another 43 control patients in the participating centers. Catheter positioning was standardized according to the Schaumann and Thomale classification. RESULTS: All ventricular catheters had a cephalad grade I or II positioning, and caudally, its extension had a peritoneal location. Programmable valves were utilized in 70% and antisiphon devices in 20% of the cases. Regular differential pressure valves were utilized in the remaining. No case of flow catheter obstruction was identified during a mean follow-up period of 2 years at the time of this writing. There were four catheter obstructions in the control cohort, all pediatric cases, during the first year. Shunt infections occurred in two cases in the control group, while there was one recurrent case of adult ventriculitis in the flow catheter group. CONCLUSIONS: This prototype model represents the next generation of ventricular catheters with a homogeneous flow pattern. The flow catheter can be inserted safely in hydrocephalic patients, and this preliminary prospective comparative study showed a possible obstruction-free functionality.


Asunto(s)
Ventrículos Cerebrales , Hidrocefalia , Adulto , Catéteres , Ventrículos Cerebrales/cirugía , Derivaciones del Líquido Cefalorraquídeo/efectos adversos , Niño , Diseño de Equipo , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/cirugía , Estudios Prospectivos
2.
Childs Nerv Syst ; 30(1): 105-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23881424

RESUMEN

INTRODUCTION: The most common treatment for hydrocephalus remains the ventriculoperitoneal shunt. Yet, the most frequent complication is ventricular catheter obstruction, which may account for 50-80 % of newly inserted shunts. Although many factors contribute to this, the main one is related to flow characteristics of the catheter within the hydrocephalic brain. A landmark study by Lin et al. addressed the problem of fluid characteristics in ventricular catheters using a two-dimensional simulation program of computational fluid dynamics (CFD). METHODS: The authors have studied five current commercially available ventricular catheter designs using CFD in three-dimensional automated designs. The general procedure for the development of a CFD model involves incorporating the physical dimensions of the system to be studied into a virtual wire-frame model. The shape and features of the actual physical model are transformed into coordinates for the virtual space of the computer and a CFD computational grid (mesh) is generated. The fluid properties and motion are calculated at each of these grid points. After grid generation, flow field boundary conditions are applied, and the fluid's thermodynamic and transport properties are included. At the end, a system of strongly coupled, nonlinear, partial differential conservation equations governing the motion of the flow field are numerically solved. This numerical solution describes the fluid motion and properties. RESULTS: The authors calculated that most of the total fluid mass flows into the catheter's most proximal holes. Fifty to 75 % flows into the two most proximal sets of inlets of current commercially available 12-32-hole catheters. Some flow uniformity was disclosed in Rivulet-type catheter. CONCLUSIONS: Most commercially available ventricular catheters have an abnormally increase flow distribution pattern. New catheter designs with variable hole diameters along the catheter tip will allow the fluid to enter the catheter more uniformly along its length, thereby reducing the probability of its becoming occluded.


Asunto(s)
Catéteres de Permanencia , Diseño de Equipo/métodos , Hidrocefalia/cirugía , Hidrodinámica , Imagenología Tridimensional/métodos , Derivación Ventriculoperitoneal/métodos , Ventrículos Cerebrales/patología , Ventrículos Cerebrales/fisiología , Ventrículos Cerebrales/cirugía , Diseño de Equipo/instrumentación , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/fisiopatología , Resistencia al Corte/fisiología , Derivación Ventriculoperitoneal/instrumentación
3.
Naturwissenschaften ; 96(7): 749-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19513596

RESUMEN

Molecular topology is an application of graph theory and statistics in fields like chemistry, biology, and pharmacology, in which the molecular structure matters. Its scope is the topological characterization of molecules by means of numerical invariants, called topological indices, which are the main ingredients of the molecular topological models. These are statistical models that are instrumental in the discovery of new applications of naturally occurring molecules, as well as in the design of synthetic molecules with specific chemical, biological, or pharmacological properties. In this review, we focus on pharmacology, which is a novel field of application of molecular topology. Besides summarizing some recent developments, we also seek to bring closer this interesting biomedical application of mathematics to an interdisciplinary readership.


Asunto(s)
Descubrimiento de Drogas/métodos , Estructura Molecular , Gráficos por Computador , Matemática , Modelos Moleculares , Modelos Teóricos , Teoría Cuántica
4.
Chaos ; 19(2): 023125, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19566260

RESUMEN

The work described in this paper can be interpreted as an application of the order patterns of symbolic dynamics when dealing with unimodal maps. Specifically, it is shown how Gray codes can be used to estimate the probability distribution functions (PDFs) of the order patterns of unimodal maps whose dynamics is controlled by an external parameter. Furthermore, these PDFs depend on the value of the external parameter, which eventually provides a handle to estimate the parameter value from symbolic sequences (in form of Gray codes), even when the critical point depends on the parameter.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23719698

RESUMEN

Co(2+)-containing cordierite glasses, of nominal compositions (Mg(1-x)Co(x))2Al4Si5O18 (with x = 0, 0.2, 0.4, 0.6, 0.8 and 1), were prepared by melting colloidal gel precursors. After isothermal heating at 1273 K for around 28 h, a single-phase α-cordierite (high-temperature hexagonal polymorph) was synthesized. All materials were investigated using X-ray powder diffraction and field-emission scanning electron microscopy. The crystal structure and microstructure were determined from X-ray diffraction patterns. Rietveld refinement confirmed the formation of magnesium-cobalt cordierite solid solutions. The unit-cell volume increased with the increase of cobalt content in the starting glass. The crystalline microstructure of the cordierites was interpreted using a mathematical model of a polycrystalline material and characterized by prevalent crystallite shape, volume-weighted crystallite size distribution and second-order crystalline lattice-strain distribution. Hexagonal prismatic was the prevalent shape of α-cordierite crystallites. Bimodality in the size distribution was observed and interpreted as a consequence of two paths of the crystallization: the nucleation from glass of µ-cordierite, which transformed into α-cordierite with annealing, or the nucleation of α-cordierite directly from glass at high temperatures. Scanning electron microscopy images agreed well with crystalline microstructure characteristics determined from the X-ray diffraction line-profile analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA