Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Parasitol Int ; 57(1): 54-61, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17933581

RESUMEN

The mitochondrial metabolic pathway of the parasitic nematode Ascaris suum changes dramatically during its life cycle, to adapt to changes in the environmental oxygen concentration. We previously showed that A. suum mitochondria express stage-specific isoforms of complex II (succinate-ubiquinone reductase: SQR/quinol-fumarate reductase: QFR). The flavoprotein (Fp) and small subunit of cytochrome b (CybS) in adult complex II differ from those of infective third stage larval (L3) complex II. However, there is no difference in the iron-sulfur cluster (Ip) or the large subunit of cytochrome b (CybL) between adult and L3 isoforms of complex II. In the present study, to clarify the changes that occur in the respiratory chain of A. suum larvae during their migration in the host, we examined enzymatic activity, quinone content and complex II subunit composition in mitochondria of lung stage L3 (LL3) A. suum larvae. LL3 mitochondria showed higher QFR activity ( approximately 160 nmol/min/mg) than mitochondria of A. suum at other stages (L3: approximately 80 nmol/min/mg; adult: approximately 70 nmol/min/mg). Ubiquinone content in LL3 mitochondria was more abundant than rhodoquinone ( approximately 1.8 nmol/mg versus approximately 0.9 nmol/mg). Interestingly, the results of two-dimensional bule-native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses showed that LL3 mitochondria contained larval Fp (Fp(L)) and adult Fp (Fp(A)) at a ratio of 1:0.56, and that most LL3 CybS subunits were of the adult form (CybS(A)). This clearly indicates that the rearrangement of complex II begins with a change in the isoform of the anchor CybS subunit, followed by a similar change in the Fp subunit.


Asunto(s)
Ascariasis/parasitología , Ascaris suum/enzimología , Complejo II de Transporte de Electrones/metabolismo , Mitocondrias Musculares/enzimología , Migración Animal/fisiología , Animales , Anticuerpos Antihelmínticos/análisis , Anticuerpos Antihelmínticos/metabolismo , Ascariasis/enzimología , Ascaris suum/crecimiento & desarrollo , Ascaris suum/fisiología , Western Blotting , Complejo II de Transporte de Electrones/análisis , Complejo II de Transporte de Electrones/química , Electroforesis en Gel de Poliacrilamida , Larva/enzimología , Larva/fisiología , Oxidorreductasas/análisis , Oxidorreductasas/metabolismo , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Quinonas/análisis , Conejos
2.
Biochim Biophys Acta ; 1553(1-2): 123-39, 2002 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-11803022

RESUMEN

Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.


Asunto(s)
Ascaris suum/enzimología , Complejos Multienzimáticos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Oxidorreductasas/metabolismo , Plasmodium falciparum/enzimología , Succinato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Animales , Complejo II de Transporte de Electrones , Metabolismo Energético , Fumaratos/metabolismo , Estadios del Ciclo de Vida , Mitocondrias/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Oxidorreductasas/química , Filogenia , Alineación de Secuencia , Succinato Deshidrogenasa/química , Ácido Succínico/metabolismo
3.
FEBS Lett ; 543(1-3): 174-8, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12753928

RESUMEN

Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase. Although previous studies suggested that the eukaryotic CLK-1/Coq7 family is a hydroxylase of demethoxyubiquinone, there was no direct evidence to show the enzymatic activity of the eukaryotic CLK-1/Coq7 family. Here we show that the plasmid encoding C. elegans CLK-1 supported aerobic respiration on a non-fermentable carbon source of E. coli ubiF mutant strain and rescued the ability to synthesize ubiquinone, suggesting that the eukaryotic CLK-1/Coq7p family could function as bacterial UbiF.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Escherichia coli , Escherichia coli/genética , Oxigenasas de Función Mixta/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Prueba de Complementación Genética , Longevidad , Mutación , Ubiquinona/biosíntesis
4.
Mol Biochem Parasitol ; 128(2): 175-86, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12742584

RESUMEN

We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.


Asunto(s)
Ascaris suum/enzimología , Ascaris suum/crecimiento & desarrollo , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Mitocondrias/enzimología , Aerobiosis , Secuencia de Aminoácidos , Animales , Ascaris suum/citología , Clonación Molecular , Grupo Citocromo b/genética , Grupo Citocromo b/aislamiento & purificación , Transporte de Electrón , Cinética , Larva/enzimología , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Mapeo Peptídico , Filogenia , Alineación de Secuencia , Especificidad de la Especie
5.
Mitochondrion ; 2(3): 191-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16120320

RESUMEN

RNA-mediated interference (RNAi) was employed to systematically inactivate the four subunits of complex II in the mitochondrial electron transport chain. Embryonic lethality was the predominant result of inactivating three subunits (ceSDHB, ceSDHC, and ceSDHD) when using the soaking method to inactivate RNA. The feeding method was employed to deliver dsRNA from the fourth subunit (ceSDHA) to wild-type, mev-1 (mutated in ceSDHC of complex II), and gas-1 animals (mutated in a complex I gene). Survival was reduced only in the mev-1 genetic background, and in an oxygen-dependent fashion. Collectively, these data provide further evidence that compromised complex II integrity can result in sensitivity to oxidative stress.

6.
Gene ; 516(1): 39-47, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23268347

RESUMEN

The parasitic nematode Ascaris suum successfully adapts to a significant decrease in oxygen availability during its life cycle by altering its metabolic system dramatically. However, little is known about the regulatory mechanisms of adaptation to hypoxic environments in A. suum. In multicellular organisms, hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor composed of HIF-1α and HIF-1ß subunits, is a master regulator of genes involved in adaptation to hypoxia. In the present study, cDNAs encoding HIF-1α and HIF-1ß were cloned from A. suum and characterized. The full-length A. suum hif-1α and hif-1ß cDNAs contain open reading frames encoding proteins with 832 and 436 amino acids, respectively. In the deduced amino acid sequences of A. suum HIF-1α and HIF-1ß, functional domains essential for DNA-binding, dimerization, and oxygen-dependent prolyl hydroxylation were conserved. The interaction between A. suum HIF-1α and HIF-1ß was confirmed by the yeast two-hybrid assay. Both A. suum hif-1α and hif-1ß mRNAs were expressed at all stages examined (fertilized eggs, third-stage larvae, lung-stage larvae, young adult worms, and adult muscle tissue), and most abundantly in the aerobic free-living third-stage larvae, followed by a gradual decrease after infection of the host. hif-1 mRNA transcription was not sensitive to the oxygen environment in either third-stage larvae or adult worms (muscle tissue), and was regulated in a stage-specific manner. High expression of hif-1 mRNAs in third-stage larvae suggests its contribution to pre-adaptation to a hypoxic environment after infection of their host. Sequence analysis of 5'-upstream regions of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) genes, which show stage-specific expression and play an important role in oxygen adaptation during the life cycle, revealed that all subunits except for the adult-type flavoprotein subunit (Fp) possess putative hypoxia-responsive elements (HREs), suggesting that they are hif-1 target genes.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Ascaris suum/crecimiento & desarrollo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Estadios del Ciclo de Vida , Oxígeno/metabolismo , Secuencia de Aminoácidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Ascaris suum/genética , Clonación Molecular , ADN Complementario , ADN de Helmintos/genética , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/metabolismo , Femenino , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
J Agric Food Chem ; 59(11): 5927-34, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21563825

RESUMEN

The main flavonoids were isolated from three selected onion cultivars. Three phenolic compounds were obtained by reverse-phase HPLC, and their structures were elucidated by multiple NMR measurements. There were two known compounds, quercetin and quercetin 3'-O-ß-D-glucopyranoside (Q3'G), and one novel compound, quercetin 3-O-ß-D-glucopyranoside-(4→1)-ß-d-glucopyranoside (Q3M), which was identified in onion for the first time. These flavonoids were found to be more abundant in the onion peel than in the flesh or core. Their antioxidative activities were tested using the DPPH method, and their antiaging activities were evaluated using a Caenorhabditis elegans lifespan assay. No direct correlation was found between antioxidative activity and antiaging activity. Quercetin showed the highest antioxidative activity, whereas Q3M showed the strongest antiaging activity among these flavonoids, which might be related to its high hydrophilicity.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Longevidad/efectos de los fármacos , Cebollas/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Caenorhabditis elegans/fisiología , Flavonoides/química , Esperanza de Vida , Extractos Vegetales/química
8.
Mitochondrion ; 10(2): 158-65, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20006739

RESUMEN

Reactive oxygen species (ROS) production from mitochondrial complex II (succinate-quinone reductase, SQR) has become a focus of research recently since it is implicated in carcinogenesis. To date, the FAD site is proposed as the ROS producing site in complex II, based on studies done on Escherichia coli, whereas the quinone binding site is proposed as the site of ROS production based on studies in Saccharomyces cerevisiae. Using the submitochondrial particles from the adult worms and L(3) larvae of the parasitic nematode Ascaris suum, we found that ROS are produced from more than one site in the mitochondrial complex II. Moreover, the succinate-dependent ROS production from the complex II of the A. suum adult worm was significantly higher than that from the complex II of the L(3) larvae. Considering the conservation of amino acids crucial for the SQR activity and the high levels of ROS production from the mitochondrial complex II of the A. suum adult worm together with the absence of complexes III and IV activities in its respiratory chain, it is a good model to examine the reactive oxygen species production from the mitochondrial complex II.


Asunto(s)
Ascaris suum/metabolismo , Benzoquinonas/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Sitios de Unión , Larva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA