Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 29(3): 317-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617673

RESUMEN

RNA regulation can be performed by a second targeting RNA molecule, such as in the microRNA regulation mechanism. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probes the structure of RNA molecules and can resolve RNA:protein interactions, but RNA:RNA interactions have not yet been addressed with this technique. Here, we apply SHAPE to investigate RNA-mediated binding processes in RNA:RNA and RNA:RNA-RBP complexes. We use RNA:RNA binding by SHAPE (RABS) to investigate microRNA-34a (miR-34a) binding its mRNA target, the silent information regulator 1 (mSIRT1), both with and without the Argonaute protein, constituting the RNA-induced silencing complex (RISC). We show that the seed of the mRNA target must be bound to the microRNA loaded into RISC to enable further binding of the compensatory region by RISC, while the naked miR-34a is able to bind the compensatory region without seed interaction. The method presented here provides complementary structural evidence for the commonly performed luciferase-assay-based evaluation of microRNA binding-site efficiency and specificity on the mRNA target site and could therefore be used in conjunction with it. The method can be applied to any nucleic acid-mediated RNA- or RBP-binding process, such as splicing, antisense RNA binding, or regulation by RISC, providing important insight into the targeted RNA structure.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Interferencia de ARN , Proteínas Argonautas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nucleic Acids Res ; 51(20): 11162-11177, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819016

RESUMEN

MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate gene expression by binding to specific sites in mRNAs. Site recognition is primarily mediated by the seed region (nucleotides g2-g8 in the miRNA), but pairing beyond the seed (3'-pairing) is important for some miRNA:target interactions. Here, we use SHAPE, luciferase reporter assays and transcriptomics analyses to study the combined effect of 3'-pairing and secondary structures in mRNAs on repression efficiency. Using the interaction between miR-34a and its SIRT1 binding site as a model, we provide structural and functional evidence that 3'-pairing can compensate for low seed-binding site accessibility, enabling repression of sites that would otherwise be ineffective. We show that miRNA 3'-pairing regions can productively base-pair with nucleotides far upstream of the seed-binding site and that both hairpins and unstructured bulges within the target site are tolerated. We use SHAPE to show that sequences that overcome inaccessible seed-binding sites by strong 3'-pairing adopt the predicted structures and corroborate the model using luciferase assays and high-throughput modelling of 8177 3'-UTR targets for six miRNAs. Finally, we demonstrate that PHB2, a target of miR-141, is an inaccessible target rescued by efficient 3'-pairing. We propose that these results could refine predictions of effective target sites.


Asunto(s)
MicroARNs , ARN Mensajero , Emparejamiento Base , Luciferasas/genética , MicroARNs/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Regulación de la Expresión Génica , Conformación de Ácido Nucleico
3.
Liver Int ; 44(2): 541-558, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014627

RESUMEN

BACKGROUND & AIMS: Alagille syndrome (ALGS) manifests with peripheral intrahepatic bile duct (IHBD) paucity, which can spontaneously resolve. In a model for ALGS, Jag1Ndr/Ndr mice, this occurs with distinct architectural mechanisms in hilar and peripheral IHBDs. Here, we investigated region-specific IHBD characteristics and addressed whether IGF1, a cholangiocyte mitogen that is downregulated in ALGS and in Jag1Ndr/Ndr mice, can improve biliary outcomes. METHODS: Intrahepatic cholangiocyte organoids (ICOs) were derived from hilar and peripheral adult Jag1+/+ and Jag1Ndr/Ndr livers (hICOs and pICOs, respectively). ICOs were grown in Matrigel or microwell arrays, and characterized using bulk RNA sequencing, immunofluorescence, and high throughput analyses of nuclear sizes. ICOs were treated with IGF1, followed by analyses of growth, proliferation, and death. CellProfiler and Python scripts were custom written for image analyses. Key results were validated in vivo by immunostaining. RESULTS: Cell growth assays and transcriptomics demonstrated that Jag1Ndr/Ndr ICOs were less proliferative than Jag1+/+ ICOs. IGF1 specifically rescued survival and growth of Jag1Ndr/Ndr pICOs. Jag1Ndr/Ndr hICOs were the least proliferative, with lower Notch signalling and an enrichment of hepatocyte signatures and IGF uptake/transport pathways. In vitro (Jag1Ndr/Ndr hICOs) and in vivo (Jag1Ndr/Ndr hilar portal tracts) analyses revealed ectopic HNF4a+ hepatocytes. CONCLUSIONS: Hilar and peripheral Jag1Ndr/Ndr ICOs exhibit differences in Notch signalling status, proliferation, and cholangiocyte commitment which may result in cholangiocyte-to-hepatocyte transdifferentiation. While Jag1Ndr/Ndr pICOs can be rescued by IGF1, hICOs are unresponsive, perhaps due to their hepatocyte-like state and/or expression of IGF transport components. IGF1 represents a potential therapeutic for peripheral bile ducts.


Asunto(s)
Síndrome de Alagille , Sistema Biliar , Ratones , Animales , Síndrome de Alagille/genética , Conductos Biliares , Conductos Biliares Intrahepáticos , Organoides/metabolismo
4.
Dev Biol ; 447(1): 58-70, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969930

RESUMEN

Breaking symmetry in populations of uniform cells, to induce adoption of an alternative cell fate, is an essential developmental mechanism. Similarly, domain and boundary establishment are crucial steps to forming organs during development. Notch signaling is a pathway ideally suited to mediating precise patterning cues, as both receptors and ligands are membrane-bound and can thus act as a precise switch to toggle cell fates on or off. Fine-tuning of signaling by positive or negative feedback mechanisms dictate whether signaling results in lateral induction or lateral inhibition, respectively, allowing Notch to either induce entire regions of cell specification, or dictate binary fate choices. Furthermore, pathway activity is modulated by Fringe modification of receptors or ligands, co-expression of receptors with ligands, mode of ligand presentation, and cell surface area in contact. In this review, we describe how Notch signaling is fine-tuned to mediate lateral induction or lateral inhibition cues, and discuss examples from C.elegans, D. melanogaster and M. musculus. Identifying the cellular machinery dictating the choice between lateral induction and lateral inhibition highlights the versatility of the Notch signaling pathway in development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Ratones , Receptores Notch/genética
5.
Development ; 144(10): 1743-1763, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28512196

RESUMEN

Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.


Asunto(s)
Enfermedades Genéticas Congénitas/embriología , Enfermedades Genéticas Congénitas/genética , Receptores Notch/genética , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Síndrome de Alagille/embriología , Síndrome de Alagille/genética , Animales , Biología Evolutiva , Displasia Ectodérmica/embriología , Displasia Ectodérmica/genética , Síndrome de Hajdu-Cheney/embriología , Síndrome de Hajdu-Cheney/genética , Hernia Diafragmática/embriología , Hernia Diafragmática/genética , Humanos , Deformidades Congénitas de las Extremidades/embriología , Deformidades Congénitas de las Extremidades/genética , Meningocele/embriología , Meningocele/genética , Dermatosis del Cuero Cabelludo/congénito , Dermatosis del Cuero Cabelludo/embriología , Dermatosis del Cuero Cabelludo/genética
6.
Gastroenterology ; 154(4): 1080-1095, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29162437

RESUMEN

BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.


Asunto(s)
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutación Missense , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patología , Animales , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Diferenciación Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteína Jagged-1/metabolismo , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis , Organoides , Fenotipo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Transducción de Señal , Transfección
8.
Proc Natl Acad Sci U S A ; 110(7): E602-10, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23324743

RESUMEN

Wnts are a family of secreted proteins that regulate multiple steps of neural development and stem cell differentiation. Two of them, Wnt1 and Wnt5a, activate distinct branches of Wnt signaling and individually regulate different aspects of midbrain dopaminergic (DA) neuron development. However, several of their functions and interactions remain to be elucidated. Here, we report that loss of Wnt1 results in loss of Lmx1a and Ngn2 expression, as well as agenesis of DA neurons in the midbrain floor plate. Remarkably, a few ectopic DA neurons still emerge in the basal plate of Wnt1(-/-) mice, where Lmx1a is ectopically expressed. These results indicate that Wnt1 orchestrates DA specification and neurogenesis in vivo. Analysis of Wnt1(-/-);Wnt5a(-/-) mice revealed a greater loss of Nurr1(+) cells and DA neurons than in single mutants, indicating that Wnt1 and Wnt5a interact genetically and cooperate to promote midbrain DA neuron development in vivo. Our results unravel a functional interaction between Wnt1 and Wnt5a resulting in enhanced DA neurogenesis. Taking advantage of these findings, we have developed an application of Wnts to improve the generation of midbrain DA neurons from neural and embryonic stem cells. We thus show that coordinated Wnt actions promote DA neuron development in vivo and in stem cells and suggest that coordinated Wnt administration can be used to improve DA differentiation of stem cells and the development of stem cell-based therapies for Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Mesencéfalo/crecimiento & desarrollo , Neurogénesis/fisiología , Células Madre/citología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt1/metabolismo , Análisis de Varianza , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Recuento de Células , Diferenciación Celular/fisiología , Neuronas Dopaminérgicas/metabolismo , Inmunohistoquímica , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteína Wnt-5a , Proteína Wnt1/deficiencia
9.
Dev Biol ; 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30639158
10.
Dev Biol ; 447(1): 1-2, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29885286
11.
Development ; 138(17): 3593-612, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828089

RESUMEN

Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.


Asunto(s)
Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Modelos Biológicos , Receptores Notch/genética , Transducción de Señal/genética , Vertebrados/genética , Vertebrados/metabolismo
12.
Curr Opin Cell Biol ; 86: 102302, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38194749

RESUMEN

Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.


Asunto(s)
Síndrome de Alagille , Humanos , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Síndrome de Alagille/terapia , Proteínas Serrate-Jagged , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al Calcio/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1/genética
13.
Stem Cells ; 30(5): 865-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22290867

RESUMEN

Secreted Frizzled related proteins (sFRPs) are a family of proteins that modulate Wnt signaling, which in turn regulates multiple aspects of ventral midbrain (VM) and dopamine (DA) neuron development. However, it is not known which Wnt signaling branch and what aspects of midbrain DA neuron development are regulated by sFRPs. Here, we show that sFRP1 and sFRP2 activate the Wnt/planar-cell-polarity/Rac1 pathway in DA cells. In the developing VM, sFRP1 and sFRP2 are expressed at low levels, and sFRP1-/- or sFRP2-/- mice had no detectable phenotype. However, compound sFRP1-/-;sFRP2-/- mutants revealed a Wnt/PCP phenotype similar to that previously described for Wnt5a-/- mice. This included an anteroposterior shortening of the VM, a lateral expansion of the Shh domain and DA lineage markers (Lmx1a and Th), as well as an accumulation of Nurr1+ precursors in the VM. In vitro experiments showed that, while very high concentrations of SFRP1 had a negative effect on cell survival, low/medium concentrations of sFRP1 or sFRP2 promoted the DA differentiation of progenitors derived from primary VM cultures or mouse embryonic stem cells (ESCs), mimicking the effects of Wnt5a. We thus conclude that the main function of sFRP1 and sFRP2 is to enhance Wnt/PCP signaling in DA cells and to regulate Wnt/PCP-dependent functions in midbrain development. Moreover, we suggest that low-medium concentrations of sFRPs may be used to enhance the DA differentiation of ESCs and improve their therapeutic application.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Mesencéfalo/embriología , Proteínas del Tejido Nervioso/metabolismo , Animales , Neuronas Dopaminérgicas/citología , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacología , Mesencéfalo/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Cell Mol Life Sci ; 69(11): 1755-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22113372

RESUMEN

Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.


Asunto(s)
Endocitosis/fisiología , Modelos Biológicos , Transducción de Señal , Comunicación Celular , Vesículas Cubiertas por Clatrina/fisiología , Ligandos , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/fisiología , Receptores Notch/metabolismo , Receptores Notch/fisiología , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiología
15.
J Cell Sci ; 123(Pt 17): 2931-42, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20720151

RESUMEN

In Notch signaling, cell-bound ligands activate Notch receptors on juxtaposed cells, but the relationship between ligand endocytosis, ubiquitylation and ligand-receptor interaction remains poorly understood. To study the specific role of ligand-receptor interaction, we identified a missense mutant of the Notch ligand Jagged1 (Nodder, Ndr) that failed to interact with Notch receptors, but retained a cellular distribution that was similar to wild-type Jagged1 (Jagged1(WT)) in the absence of active Notch signaling. Both Jagged1(WT) and Jagged1(Ndr) interacted with the E3 ubiquitin ligase Mind bomb, but only Jagged1(WT) showed enhanced ubiquitylation after co-culture with cells expressing Notch receptor. Cells expressing Jagged1(WT), but not Jagged1(Ndr), trans-endocytosed the Notch extracellular domain (NECD) into the ligand-expressing cell, and NECD colocalized with Jagged1(WT) in early endosomes, multivesicular bodies and lysosomes, suggesting that NECD is routed through the endocytic degradation pathway. When coexpressed in the same cell, Jagged1(Ndr) did not exert a dominant-negative effect over Jagged1(WT) in terms of receptor activation. Finally, in Jag1(Ndr/Ndr) mice, the ligand was largely accumulated at the cell surface, indicating that engagement of the Notch receptor is important for ligand internalization in vivo. In conclusion, the interaction-dead Jagged1(Ndr) ligand provides new insights into the specific role of receptor-ligand interaction in the intracellular trafficking of Notch ligands.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Endocitosis , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Ligandos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Proteínas Serrate-Jagged , Transducción de Señal , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Vis Exp ; (180)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35225287

RESUMEN

Manipulating gene expression in the developing mouse brain in utero holds great potential for functional genetics studies. However, it has previously largely been restricted to the manipulation of embryonic stages post-neurulation. A protocol was developed to inject the amniotic cavity at embryonic day (E)7.5 and deliver lentivirus, encoding cDNA or shRNA, targeting >95% of the neural plate and neural crest cells, contributing to the future brain, spinal cord, and peripheral nervous system. This protocol describes the steps necessary to achieve successful transduction, including grinding of the glass capillary needles, pregnancy verification, developmental staging using ultrasound imaging, and optimal injection volumes matched to embryonic stages. Following this protocol, it is possible to achieve transduction of >95% of the developing brain with high-titer lentivirus and thus perform whole-brain genetic manipulation. In contrast, it is possible to achieve mosaic transduction using lower viral titers, allowing for genetic screening or lineage tracing. Injection at E7.5 also targets ectoderm and neural crest contributing to distinct compartments of the eye, tongue, and peripheral nervous system. This technique thus offers the possibility to manipulate gene expression in mouse neural-plate- and ectoderm-derived tissues from preneurulation stages, with the benefit of reducing the number of mice used in experiments.


Asunto(s)
Neptuno , Placa Neural , Animales , Ectodermo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Cresta Neural/metabolismo , Sistema Nervioso Periférico , Embarazo
17.
EMBO Mol Med ; 14(12): e15809, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345711

RESUMEN

Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.


Asunto(s)
Síndrome de Alagille , Femenino , Masculino , Animales , Ratones , Síndrome de Alagille/complicaciones , Caracteres Sexuales , Retina , Factores de Riesgo
18.
Dev Biol ; 348(2): 153-66, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20887720

RESUMEN

The Notch signaling pathway controls cell fate choices at multiple steps during cell lineage progression. To produce the cell fate choice appropriate for a particular stage in the cell lineage, Notch signaling needs to interpret the cell context information for each stage and convert it into the appropriate cell fate instruction. The molecular basis for this temporal context-dependent Notch signaling output is poorly understood, and to study this, we have engineered a mouse embryonic stem (ES) cell line, in which short pulses of activated Notch can be produced at different stages of in vitro neural differentiation. Activation of Notch signaling for 6h specifically at day 3 during neural induction in the ES cells led to significantly enhanced cell proliferation, accompanied by Notch-mediated activation of cyclin D1 expression. A reduction of cyclin-D1-expressing cells in the developing CNS of Notch signaling-deficient mouse embryos was also observed. Expression of a dominant negative form of cyclin D1 in the ES cells abrogated the Notch-induced proliferative response, and, conversely, a constitutively active form of cyclin D1 mimicked the effect of Notch on cell proliferation. In conclusion, the data define a novel temporal context-dependent function of Notch and a critical role for cyclin D1 in the Notch-induced proliferation in ES cells.


Asunto(s)
Ciclina D1/metabolismo , Células Madre Embrionarias/citología , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Ciclina D1/genética , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Ratones , Células-Madre Neurales/citología , ARN Mensajero/metabolismo , Ratas , Receptores Notch/genética
19.
Biochim Biophys Acta ; 1803(8): 983-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20381543

RESUMEN

Caveolae and caveolin have been implicated as being involved in the signal transduction of many receptors, including the EGF, PDGF, LPA and beta3-adrenergic receptors. To investigate the role of caveolin-1 (Cav1) in these signaling pathways in brown adipose tissue, primary brown adipocyte cultures from Cav1-ablated mice and wild-type mice were investigated. In pre-adipocytes, Cav1-ablation affected neither the G-protein coupled LPA receptor signaling to Erk1/2, nor the receptor tyrosine kinases PDGF- or EGF-receptor signaling to Erk1/2. Mature primary Cav1-/- brown adipocytes accumulated lipids and expressed aP2 to the same extent as did wild-type cells. However, the cAMP levels induced by the beta3-adrenergic receptor agonist CL316,243 were lower in the Cav1-/- cultures, with an unchanged EC50 for CL316,243. Also the response to the direct adenylyl cyclase agonist forskolin was reduced. Thus, in brown adipocytes, Cav1 is apparently required for an intact response to adenylyl cyclase-linked agonists/activators, whereas other signaling pathways examined function without Cav1.


Asunto(s)
Adipocitos Marrones/fisiología , Caveolina 1/metabolismo , Receptores ErbB/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Adipocitos Marrones/citología , Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/metabolismo , Animales , Caveolina 1/genética , Colforsina/metabolismo , AMP Cíclico/metabolismo , Dioxoles/metabolismo , Receptores ErbB/genética , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores del Ácido Lisofosfatídico/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética
20.
Circ Res ; 104(3): 372-9, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19096028

RESUMEN

In this study, we examined the signaling pathways activated by Wnt5a in endothelial differentiation of embryonic stem (ES) cells and the function of Wnt5a during vascular development. We first found that Wnt5a(-/-) mouse embryonic stem (mES) cells exhibited a defect in endothelial differentiation, which was rescued by addition of Wnt5a, suggesting that Wnt5a is required for endothelial differentiation of ES cells. Involvement of both beta-catenin and protein kinase (PK)Calpha pathways in endothelial differentiation of mES cells requiring Wnt5a was indicated by activation of both beta-catenin and PKCalpha in Wnt5a(+/-) but not in Wnt5a(-/-) mES cells. We also found that beta-catenin or PKCalpha knockdowns inhibited the Wnt5a-induced endothelial differentiation of ES cells. Moreover, the lack of endothelial differentiation of Wnt5a(-/-) mES cells was rescued only by transfection of both beta-catenin and PKCalpha, indicating that both genes are required for Wnt5a-mediated endothelial differentiation. Wnt5a was also found to be essential for the differentiation of mES cells into immature endothelial progenitor cells, which are known to play a role in repair of damaged endothelium. Furthermore, a defect in the vascularization of the neural tissue was detected at embryonic day 14.5 in Wnt5a(-/-) mice, implicating Wnt5a in vascular development in vivo. Thus, we conclude that Wnt5a is involved in the endothelial differentiation of ES cells via both Wnt/beta-catenin and PKC signaling pathways and regulates embryonic vascular development.


Asunto(s)
Células Madre Embrionarias/metabolismo , Neovascularización Fisiológica/fisiología , Proteína Quinasa C-alfa/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/citología , Endotelio Vascular/citología , Endotelio Vascular/embriología , Regulación del Desarrollo de la Expresión Génica , Operón Lac , Ratones , Ratones Noqueados , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteína Wnt-5a
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA