Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7907): 697-707, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255491

RESUMEN

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Asunto(s)
Encéfalo , COVID-19 , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Encéfalo/virología , COVID-19/patología , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , SARS-CoV-2 , Olfato , Reino Unido/epidemiología
2.
Neuroimage ; 283: 120397, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820862

RESUMEN

Diffusion-weighted MRI (dMRI) is a medical imaging method that can be used to investigate the brain microstructure and structural connections between different brain regions. The method, however, requires relatively complex data processing frameworks and analysis pipelines. Many of these approaches are vulnerable to signal dropout artefacts that can originate from subjects moving their head during the scan. To combat these artefacts and eliminate such outliers, researchers have proposed two approaches: to replace outliers or to downweight outliers during modelling and analysis. With the rising interest in dMRI for clinical research, these types of corrections are increasingly important. Therefore, we set out to investigate the differences between outlier replacement and weighting approaches to help the dMRI community to select the best tool for their data processing pipelines. We evaluated dMRI motion correction registration and single tensor model fit pipelines using Gaussian Process and Spherical Harmonic based replacement approaches and outlier downweighting using highly realistic whole-brain simulations. As a proof of concept, we applied these approaches to dMRI infant data sets that contained varying numbers of dropout artefacts. Based on our results, we concluded that the Gaussian Process based outlier replacement provided similar tensor fit results to Gaussian Process based outlier detection and downweighting. Therefore, if only the least-squares estimate of the single tensor model is of interest, our recommendation is to use outlier replacement. However, outlier downweighting can potentially provide a more accurate estimate of the model precision which could be relevant for applications such as probabilistic tractoraphy.


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Artefactos , Análisis de los Mínimos Cuadrados
3.
Magn Reson Med ; 89(6): 2376-2390, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36656151

RESUMEN

PURPOSE: To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI. METHODS: Synthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. RESULTS: The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. CONCLUSION: We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
4.
Magn Reson Med ; 90(4): 1484-1501, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317708

RESUMEN

PURPOSE: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. METHODS: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz ) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz -oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. RESULTS: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. CONCLUSION: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Artefactos , Aceleración , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar/métodos , Algoritmos
5.
Cereb Cortex ; 32(8): 1608-1624, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34518890

RESUMEN

Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur's smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.


Asunto(s)
Sustancia Blanca , Animales , Mapeo Encefálico/métodos , Macaca mulatta , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Lóbulo Parietal , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
6.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33436528

RESUMEN

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Ejercicio Físico/fisiología , Estilo de Vida Saludable/fisiología , Imagen Multimodal/métodos , Acelerometría/métodos , Acelerometría/tendencias , Adolescente , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Masculino , Imagen Multimodal/tendencias
7.
Neuroimage ; 264: 119701, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283542

RESUMEN

Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B0 field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field inhomogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B0 inhomogeneities, is prone to an additional geometric distortion in the slice direction as well. Here we demonstrate the presence of this slice distortion in high-resolution 7T EPI acquired with a novel pulse sequence allowing for the reversal of the slice-encoding gradient polarity that enables the acquisition of pairs of images with equal magnitudes of distortion in the slice direction but with opposing polarities. We also show that the slice-direction distortion can be corrected using gradient reversal-based method applying the same software used for conventional corrections of phase-encoding direction distortion.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Humanos , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Algoritmos , Encéfalo/diagnóstico por imagen
8.
Brain ; 144(7): 2199-2213, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33734321

RESUMEN

The Developing Human Connectome Project is an Open Science project that provides the first large sample of neonatal functional MRI data with high temporal and spatial resolution. These data enable mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organization in humans. Here, we characterize in unprecedented detail the maturation and integrity of resting state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder, which occur frequently in preterm children. Overall, we found a robust, modular, symmetrical functional brain organization at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma , Red Nerviosa/anatomía & histología , Vías Nerviosas/anatomía & histología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Masculino , Neurogénesis/fisiología
9.
Nature ; 536(7615): 171-178, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27437579

RESUMEN

Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Neuroanatomía/métodos , Adulto , Corteza Cerebral/citología , Conectoma , Femenino , Voluntarios Sanos , Humanos , Aprendizaje Automático , Masculino , Modelos Anatómicos , Imagen Multimodal , Neuroimagen , Probabilidad , Reproducibilidad de los Resultados , Adulto Joven
10.
Neuroimage ; 224: 117002, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502668

RESUMEN

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained variance and spurious correlations. UK Biobank is a powerful resource for studying associations between imaging and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large subject numbers. However, the resulting high statistical power also raises the sensitivity to confound effects, which therefore have to be carefully considered. In this work we describe a set of possible confounds (including non-linear effects and interactions that researchers may wish to consider for their studies using such data). We include descriptions of how we can estimate the confounds, and study the extent to which each of these confounds affects the data, and the spurious correlations that may arise if they are not controlled. Finally, we discuss several issues that future studies should consider when dealing with confounds.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo , Neuroimagen , Procesamiento Automatizado de Datos , Cabeza , Humanos , Neuroimagen/métodos , Factores de Tiempo , Reino Unido
11.
Neuroimage ; 244: 118543, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508893

RESUMEN

The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The "HCP-style" neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium.


Asunto(s)
Conectoma/historia , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Imagen de Difusión por Resonancia Magnética , Femenino , Historia del Siglo XXI , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neuroimagen , Estudios Retrospectivos
12.
J Magn Reson Imaging ; 54(1): 36-57, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32562456

RESUMEN

Diffusion imaging is a critical component in the pursuit of developing a better understanding of the human brain. Recent technical advances promise enabling the advancement in the quality of data that can be obtained. In this review the context for different approaches relative to the Human Connectome Project are compared. Significant new gains are anticipated from the use of high-performance head gradients. These gains can be particularly large when the high-performance gradients are employed together with ultrahigh magnetic fields. Transmit array designs are critical in realizing high accelerations in diffusion-weighted (d)MRI acquisitions, while maintaining large field of view (FOV) coverage, and several techniques for optimal signal-encoding are now available. Reconstruction and processing pipelines that precisely disentangle the acquired neuroanatomical information are established and provide the foundation for the application of deep learning in the advancement of dMRI for complex tissues. Level of Evidence: 3 Technical Efficacy Stage: Stage 3.


Asunto(s)
Conectoma , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador , Campos Magnéticos , Imagen por Resonancia Magnética
13.
J Neural Transm (Vienna) ; 128(5): 659-670, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33779812

RESUMEN

Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson's disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = -0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Marcha , Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagen
14.
Cereb Cortex ; 30(3): 1159-1170, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504269

RESUMEN

The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Niño , Desarrollo Infantil/fisiología , Interpretación Estadística de Datos , Femenino , Edad Gestacional , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Imagen por Resonancia Magnética , Masculino
15.
Neuroimage ; 219: 116962, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497785

RESUMEN

Nonlinear registration is critical to many aspects of Neuroimaging research. It facilitates averaging and comparisons across multiple subjects, as well as reporting of data in a common anatomical frame of reference. It is, however, a fundamentally ill-posed problem, with many possible solutions which minimise a given dissimilarity metric equally well. We present a regularisation method capable of selectively driving solutions towards those which would be considered anatomically plausible by penalising unlikely lineal, areal and volumetric deformations. This penalty is symmetric in the sense that geometric expansions and contractions are penalised equally, which encourages inverse-consistency. We demonstrate that this method is able to significantly reduce local volume changes and shape distortions compared to state-of-the-art elastic (FNIRT) and plastic (ANTs) registration frameworks. Crucially, this is achieved whilst simultaneously matching or exceeding the registration quality of these methods, as measured by overlap scores of labelled cortical regions. Extensive leveraging of GPU parallelisation has allowed us to solve this highly computationally intensive optimisation problem while maintaining reasonable run times of under half an hour.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Algoritmos , Humanos
16.
Neuroimage ; 223: 117303, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866666

RESUMEN

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20-45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Artefactos , Humanos , Lactante , Relación Señal-Ruido
17.
Psychol Med ; 50(1): 58-67, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30696514

RESUMEN

BACKGROUND: Previous studies of conduct disorder (CD) have reported structural and functional alterations in the limbic system. However, the white matter tracts that connect limbic regions have not been comprehensively studied. The uncinate fasciculus (UF), a tract connecting limbic to prefrontal regions, has been implicated in CD. However, CD-related alterations in other limbic tracts, such as the cingulum and the fornix, have not been investigated. Furthermore, few studies have examined the influence of sex and none have been adequately powered to test whether the relationship between CD and structural connectivity differs by sex. We examined whether adolescent males and females with CD exhibit differences in structural connectivity compared with typically developing controls. METHODS: We acquired diffusion-weighted magnetic resonance imaging data from 101 adolescents with CD (52 females) and 99 controls (50 females). Data were processed for deterministic spherical deconvolution tractography. Virtual dissections of the UF, the three subdivisions of the cingulum [retrosplenial cingulum (RSC), parahippocampal and subgenual cingulum], and the fornix were performed and measures of fractional anisotropy (FA) and hindrance-modulated orientational anisotropy (HMOA) were analysed. RESULTS: The CD group had lower FA and HMOA in the right RSC tract relative to controls. Importantly, these effects were moderated by sex - males with CD significantly lower FA compared to male controls, whereas CD and control females did not differ. CONCLUSIONS: Our results highlight the importance of considering sex when studying the neurobiological basis of CD. Sex differences in RSC connectivity may contribute to sex differences in the clinical presentation of CD.


Asunto(s)
Trastorno de la Conducta/fisiopatología , Sistema Límbico/fisiopatología , Sustancia Blanca/fisiopatología , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Estudios de Casos y Controles , Trastorno de la Conducta/complicaciones , Femenino , Humanos , Masculino , Distribución por Sexo , Reino Unido , Sustancia Blanca/diagnóstico por imagen
18.
Neuroimage ; 196: 102-113, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30930313

RESUMEN

In vivo human optic nerve diffusion magnetic resonance imaging (dMRI) is technically challenging with two outstanding issues not yet well addressed: (i) non-linear optic nerve movement, independent of head motion, and (ii) effect from partial-volumed cerebrospinal fluid or interstitial fluid such as in edema. In this work, we developed a non-linear optic nerve registration algorithm for improved volume alignment in axial high resolution optic nerve dMRI. During eyes-closed dMRI data acquisition, optic nerve dMRI measurements by diffusion tensor imaging (DTI) with and without free water elimination (FWE), and by diffusion basis spectrum imaging (DBSI), as well as optic nerve motion, were characterized in healthy adults at various locations along the posterior-to-anterior dimension. Optic nerve DTI results showed consistent trends in microstructural parametric measurements along the posterior-to-anterior direction of the entire intraorbital optic nerve, while the anterior portion of the intraorbital optic nerve exhibited the largest spatial displacement. Multi-compartmental dMRI modeling, such as DTI with FWE or DBSI, was less subject to spatially dependent biases in diffusivity and anisotropy measurements in the optic nerve which corresponded to similar spatial distributions of the estimated fraction of isotropic diffusion components. DBSI results derived from our clinically feasible (∼10 min) optic nerve dMRI protocol in this study are consistent with those from small animal studies, which provides the basis for evaluating the utility of multi-compartmental dMRI modeling in characterizing coexisting pathophysiology in human optic neuropathies.


Asunto(s)
Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador/métodos , Nervio Óptico/anatomía & histología , Nervio Óptico/diagnóstico por imagen , Adulto , Algoritmos , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Adulto Joven
19.
Neuroimage ; 184: 801-812, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267859

RESUMEN

Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Control de Calidad , Reproducibilidad de los Resultados , Relación Señal-Ruido
20.
Neuroimage ; 186: 286-300, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414984

RESUMEN

The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary objective of the Developing Human Connectome Project (dHCP) is to develop optimised methodological pipelines for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in making further progress in our understanding of the development of sensory processing in the infant brain.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Nocicepción/fisiología , Artefactos , Femenino , Edad Gestacional , Humanos , Recién Nacido , Masculino , Estimulación Física , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA