Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Public Health ; 22(1): 748, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421964

RESUMEN

BACKGROUND: Reliable mortality data are essential for the development of public health policies. In Brazil, although there is a well-consolidated universal system for mortality data, the quality of information on causes of death (CoD) is not even among Brazilian regions, with a high proportion of ill-defined CoD. Verbal autopsy (VA) is an alternative to improve mortality data. This study aimed to evaluate the performance of an adapted and reduced version of VA in identifying the underlying causes of non-forensic deaths, in São Paulo, Brazil. This is the first time that a version of the questionnaire has been validated considering the autopsy as the gold standard. METHODS: The performance of a physician-certified verbal autopsy (PCVA) was evaluated considering conventional autopsy (macroscopy plus microscopy) as gold standard, based on a sample of 2060 decedents that were sent to the Post-Mortem Verification Service (SVOC-USP). All CoD, from the underlying to the immediate, were listed by both parties, and ICD-10 attributed by a senior coder. For each cause, sensitivity and chance corrected concordance (CCC) were computed considering first the underlying causes attributed by the pathologist and PCVA, and then any CoD listed in the death certificate given by PCVA. Cause specific mortality fraction accuracy (CSMF-accuracy) and chance corrected CSMF-accuracy were computed to evaluate the PCVA performance at the populational level. RESULTS: There was substantial variability of the sensitivities and CCC across the causes. Well-known chronic diseases with accurate diagnoses that had been informed by physicians to family members, such as various cancers, had sensitivities above 40% or 50%. However, PCVA was not effective in attributing Pneumonia, Cardiomyopathy and Leukemia/Lymphoma as underlying CoD. At populational level, the PCVA estimated cause specific mortality fractions (CSMF) may be considered close to the fractions pointed by the gold standard. The CSMF-accuracy was 0.81 and the chance corrected CSMF-accuracy was 0.49. CONCLUSIONS: The PCVA was efficient in attributing some causes individually and proved effective in estimating the CSMF, which indicates that the method is useful to establish public health priorities.


Asunto(s)
Médicos , Adulto , Autopsia/métodos , Brasil , Causas de Muerte , Humanos , Encuestas y Cuestionarios
2.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433466

RESUMEN

The detection of bond-slip between the reinforcing bar (RB) and concrete is of great importance to ensure the safety of reinforced concrete (RC) structures. The techniques to monitor the connection between the RB and concrete are in constant development, with special focus on the ones with straightforward operation and simple non-intrusive implementation. In this work, a simple configuration is developed using 10 optical fiber sensors, allowing different sections of the same RC structure to be monitored. Since the RB may suffer different strains along its length, the location of the sensors is critical to provide an early warning about any displacement. Bragg gratings were inscribed in both silica and polymer optical fibers and these devices worked as displacement sensors by monitoring the strain variations on the fibers. The results showed that these sensors can be easily implemented in a civil construction environment, and due to the small dimensions, they can be a non-intrusive technique when multiple sensors are implemented in the same RC structure.

3.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502717

RESUMEN

Optical fiber sensors based on fiber Bragg gratings (FBGs) are prone to measurement errors if the cross-sensitivity between temperature and strain is not properly considered. This paper describes a self-compensated technique for canceling the undesired influence of temperature in strain measurement. An edge-filter-based interrogator is proposed and the central peaks of two FBGs (sensor and reference) are matched with the positive and negative slopes of a Fabry-Perot interferometer that acts as an optical filter. A tuning process performed by the grey wolf optimizer (GWO) algorithm is required to determine the optimal spectral characteristics of each FBG. The interrogation range is not compromised by the proposed technique, being determined by the spectral characteristics of the optical filter in accordance with the traditional edge-filtering interrogation. Simulations show that, by employing FBGs with optimal characteristics, temperature variations of 30 °C led to an average relative error of 3.4% for strain measurements up to 700µÏµ. The proposed technique was experimentally tested under non-ideal conditions: two FBGs with spectral characteristics different from the optimized results were used. The temperature sensibility decreased by 50.8% as compared to a temperature uncompensated interrogation system based on an edge filter. The non-ideal experimental conditions were simulated and the maximum error between theoretical and experimental data was 5.79%, proving that the results from simulation and experimentation are compatible.

4.
Opt Express ; 27(26): 38039-38048, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878576

RESUMEN

We present the first Bragg gratings fabricated in two, three and five rings undoped PMMA microstructured polymer optical fibres (mPOFs) with relative low cost 266 nm Nd:YAG laser in the 850 nm region. The fibers were connectorised with commercial ferrules for easy coupling with silica patch cables. Temperature, humidity and strain sensitivities are measured and also the impact of ring structure and the diameter of POF on the characterization measurements are studied for potential applications. We also analyzed the effect of the number of hexagonal rings structure in gratings fabrication, noticing that larger number of rings lead to more difficulties to obtain strong gratings, where we consider this performance due to the scattering effects. We demonstrate Bragg gratings fabrication in 5-rings structure mPOF after 6 min by using 266 nm Nd:YAG laser whereas no Bragg gratings have been fabricated so far using 325 nm He-Cd laser system. Up to 30 dB relative reflected power gratings are obtained in two rings mPOF, showing good time stability and promising results for undoped mPOF applications.

5.
Phys Chem Chem Phys ; 21(32): 17792-17800, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31372606

RESUMEN

The evidence for surface crystallization in ionic liquids is scarce. The existing reports seem to be contradictory as for its driving forces, since in the two compounds investigated in the literature, the contribution of coloumbic and van der Waals forces is very different. In this work 1-dodecyl-3-methylimidazolium tetrafluoroborate was studied and its surface crystallization characterized by surface tension, ellipsometry and optical microscopy. The results obtained seem to reconcile previous observations, and it was further shown, using the same techniques, that this phenomenon is prevalent in other ionic liquids. MD simulation results illustrate the different possibilities of organization, providing reasonable models to rationalize the experimental observations.

6.
Environ Res ; 173: 23-32, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884435

RESUMEN

Many studies have been conducted to evaluate the association between air pollution and adverse health effects using a wide variety of methods to assess exposure. However, the assessment of individual long-term exposure to ambient air pollution is a challenging task and has not been evaluated in a large autopsy study. Our goal was to investigate whether exposure to urban air pollution is associated to the degree of lung anthracosis, considering modifying factors such as personal habits, mobility patterns and occupational activities. We conducted a study in Sao Paulo, Brazil from February 2017 to June 2018, combining epidemiological, spatial analysis and autopsy-based approaches. Information about residential address, socio-demographic details, occupation, smoking status, time of residence in the city and time spent commuting was collected via questionnaires applied to the next-of-kin. Images of the pleura surface from upper and lower lobes were used to quantify anthracosis in the lungs. We used multiple regression models to assess the association between the amount of carbon deposits in human lungs, measured by the fraction of pleural anthracosis (FA), and potential explanatory variables. We analyzed 413 cases and our data showed that for each additional hour spent in daily commuting, the ratio FA/(1-FA) is multiplied by 1.05 (95% confidence interval: [1.02; 1.08]). The estimated coefficient for daily hours spent in traffic was not considerably affected by the inclusion of socio-demographic variables and smoking habits. We estimate a tobacco equivalent dose of 5 cigarettes per day in a city where annual PM2.5 concentration oscillates around 25 µg/m3. Pleural anthracosis is a potential index of lifetime exposure to traffic-derived air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire/estadística & datos numéricos , Antracosis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Autopsia , Brasil , Humanos , Pleura
7.
Environ Res ; 174: 88-94, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31054526

RESUMEN

BACKGROUND: Hypertension and air pollution are two important risk factors for cardiovascular morbidity and mortality. Although several studies suggest that air pollution has a significant impact on blood pressure, studies on long-term effects are sparse and still controversial. OBJECTIVE: To evaluate the effects of exposure of outdoor workers to different levels of traffic-generated PM2.5 on blood pressure. DESIGN: This is an observational panel study. PARTICIPANTS: 88 non-smoking workers exposed to different concentrations of air pollution were evaluated weekly along four successive weeks. MEASUREMENTS: In each week, personal monitoring of 24-h PM2.5 concentration and 24-h ambulatory blood pressure were measured. The association between blood pressure variables and PM2.5, adjusted for age, body mass index, time in job, daily work hours, diabetes, hypertension and cholesterol was assessed by means of multiple linear regression models fitted by least squares. RESULTS: Exposure to PM2.5 (ranging from 8.5 to 89.7 µg/m3) is significantly and consistently associated with an increase in average blood pressure. An elevation of 10 µg/m3 in the concentration of PM2.5 is associated with increments of 3.9 mm Hg (CI 95% = [1.5; 6.3]) in average systolic 24-h blood pressure for hypertensive and/or diabetic workers. CONCLUSION: Exposure to fine particles, predominantly from vehicular traffic, is associated with elevated blood pressure in hypertensive and/or diabetic workers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire/estadística & datos numéricos , Presión Sanguínea , Hipertensión/epidemiología , Exposición Profesional/estadística & datos numéricos , Monitoreo Ambulatorio de la Presión Arterial , Exposición a Riesgos Ambientales , Humanos , Material Particulado
8.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683718

RESUMEN

Fabry-Perot interferometric (FPI) sensors are an accurate and well-established sensing technology that are used to monitor a wide range of parameters such as strain, temperature, and refractive index, among many others. Nevertheless, due to the limited number and high cost of existing interrogation techniques for FPIs, its use is often restricted to discrete measurements, not being so explored for dynamic applications. The development of an alternative interrogation technique for a high rate of acquisition may propel this type of sensor into less explored fields such as dynamic biomedical applications. In this work, we present the theoretical and experimental analyses of an FPI sensing architecture by using an alternative high rate dynamic acquisition methodology, based on frequency to amplitude conversion, where the FPI spectral shift is detuned by the convolution of the optical light source with the FPI interference pattern. The good agreement between the theoretical and experimental results verified the reliability of the proposed methodology. Moreover, preliminary results show that the developed sensing architecture can be a suitable solution to monitor biomedical parameters such as the carotid pulse wave.


Asunto(s)
Tecnología Biomédica/instrumentación , Interferometría/instrumentación , Monitoreo Fisiológico/instrumentación , Algoritmos , Materiales Biocompatibles/química , Simulación por Computador , Humanos , Ácido Láctico/química , Fibras Ópticas , Impresión Tridimensional , Pulso Arterial
9.
Opt Express ; 26(10): 12939-12947, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801327

RESUMEN

This paper presents the characterization of polymer optical fibers (POFs) submitted to the catastrophic fuse effect towards intensity-variation-based sensing of strain, transverse force, temperature, and moisture. In the experiments, POFs with and without the fuse effect are tested and the results are compared with respect to the sensitivity, linearity, and root mean squared error (RMSE). The fused POFs have higher linearity and lower RMSE than non-fused POFs in strain and transverse force sensing. Also, the sensitivity of the fused POFs is higher in transverse force and temperature sensing, which can be related to the higher sensitivity to the curvature that the transverse force creates on the POF and to the more significant variations of the refractive index with temperature increase. Additionally, the fused POFs present lower moisture absorption than the non-fused POFs. The presented results indicate a great potential of the fused POFs intensity-variation-based sensing applications of various physical parameters.

10.
Opt Lett ; 43(19): 4799-4802, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272743

RESUMEN

We present results for the mechanical characterization of a bisphenol-A acrylate-based polymer optical fiber (POF) manufactured using a novel light polymerization spinning (LPS) process. The particular manufacturing process allows the development of POFs having unique mechanical characteristics, which result from an exceptionally low Young's modulus. The lower Young's modulus enables optical sensors for measuring stress or pressure with improved sensitivity and potentially a higher tunable mechanical range than conventional POFs. Moreover, properties such as the storage modulus variations with respect to the temperature and humidity were studied. Fiber Bragg gratings (FBGs), were inscribed in the POF using the plane-by-plane femtosecond laser, direct-write method for selective FBG mode excitation, and were characterized for changes to temperature, pressure, and relative humidity. The response of FBGs in this LPS-POF for all the three aforementioned measurands was several times higher than that measured for conventional POFs.

11.
Opt Lett ; 43(8): 1754-1757, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29652357

RESUMEN

This Letter presents, for the first time, to the best of our knowledge, the dynamic mechanical analysis of a polymer optical fiber (POF) that was previously damaged by the catastrophic fuse effect. The variation of the fiber Young's modulus was evaluated with respect to the increase of temperature, humidity, and frequency of strain cycles. The obtained data for the fused POF are compared with the ones for the same POF without the fuse effect. The results show the feasibility of the fused POF for sensor applications, such as strain and acceleration measurement, since it presents temperature sensitivity almost two times lower in temperatures between 26°C and 90°C and Young's modulus 2.3 times lower than those obtained with the bare fiber. The Young's modulus variation with the humidity is 1.5 MPa/%RH in a humidity range of 66-96%. In addition, the fused POF presented a variation of its dynamic modulus with the frequency increase four times lower than non-fused POFs on the range of 0.01-100.00 Hz. These results pave the way for future applications of fused POFs as sensing elements.

12.
Opt Lett ; 43(11): 2539-2542, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856424

RESUMEN

This Letter demonstrates the application of polymer optical fibers (POFs) damaged by the fiber fuse effect to curvature sensing and dynamic angular monitoring. The curvature sensing performance using the fused-POF is compared to POF without the fuse effect. Both POFs are submitted to angles of up to 90 deg in flexion/extension cycles with angular velocities ranging from 0.48 rad/s to 5.61 rad/s. The fused POF is found to show higher performance with respect to sensitivity, correlation coefficient with linear regression, and hysteresis. For instance, at the angular velocity of 0.48 rad/s, the fused POF shows >3 times higher sensitivity and significantly lower hysteresis than those of the non-fused POF. In addition, the fused POFs have lower cross-sensitivity and hysteresis variations on the tests with different angular velocities. These results indicate that the fused POFs are potential candidates to develop curvature sensors with various advantages over non-fused POFs, for applications such as gait analysis and wearable robotics.


Asunto(s)
Técnicas Biosensibles/instrumentación , Tecnología de Fibra Óptica/instrumentación , Fibras Ópticas , Polímeros , Diseño de Equipo
13.
Sensors (Basel) ; 18(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544586

RESUMEN

Magnetic field sensing is an important issue for many application areas, such as in the military, industry and navigation. The current sensors used to monitor this parameter can be susceptible to electromagnetic interferences, however due to their advantages over the traditional sensors, the optical fiber devices could be an excellent alternative. Furthermore, magnetic fluid (MF) is a new type of functional material which possesses outstanding properties, including Faraday effect, birefringence, tunable refractive index and field dependent transmission. In this paper, the optical fiber magnetic field sensors using MF as sensing element are reviewed. Due to the extensive literature, only the most used sensing configurations are addressed and discussed, which include optical fiber grating, interferometry, surface plasmon resonance (SPR) and other schemes involving tailored (etched, tapered and U-shaped) fibers.

14.
Sensors (Basel) ; 18(5)2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29693624

RESUMEN

In an era of unprecedented progress in sensing technology and communication, health services are now able to closely monitor patients and elderly citizens without jeopardizing their daily routines through health applications on their mobile devices in what is known as e-Health. Within this field, we propose an optical fiber sensor (OFS) based system for the simultaneous monitoring of shear and plantar pressure during gait movement. These parameters are considered to be two key factors in gait analysis that can help in the early diagnosis of multiple anomalies, such as diabetic foot ulcerations or in physical rehabilitation scenarios. The proposed solution is a biaxial OFS based on two in-line fiber Bragg gratings (FBGs), which were inscribed in the same optical fiber and placed individually in two adjacent cavities, forming a small sensing cell. Such design presents a more compact and resilient solution with higher accuracy when compared to the existing electronic systems. The implementation of the proposed elements into an insole is also described, showcasing the compactness of the sensing cells, which can easily be integrated into a non-invasive mobile e-Health solution for continuous remote gait monitoring of patients and elder citizens. The reported results show that the proposed system outperforms existing solutions, in the sense that it is able to dynamically discriminate shear and plantar pressure during gait.


Asunto(s)
Marcha , Pie , Humanos , Presión , Zapatos , Telemedicina
15.
Sensors (Basel) ; 18(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534514

RESUMEN

The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10-4 RIU) and limit of detection (LOD = 2 × 10-4) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.


Asunto(s)
Óptica y Fotónica , Técnicas Biosensibles , Escherichia coli , Interferometría , Refractometría
16.
Opt Lett ; 42(10): 1994-1997, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504732

RESUMEN

We propose a technique to inscribe long period gratings (LPGs) in standard single-mode fibers (SSMFs). The proposed method uses a commercial CO2 splicer that allows for the rotation of the fiber during laser irradiation, enabling a uniform exposure around the fiber. LPGs inscribed in SSMFs with different periods are presented. Gratings can be reproduced with a maximum difference between resonant wavelength values of less than 1 nm. Furthermore, it is possible to inscribe gratings with attenuation dips of -25 dB while at the same time obtaining polarization-dependent losses as low as 2 dB.

17.
Sensors (Basel) ; 17(12)2017 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-29258166

RESUMEN

We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.


Asunto(s)
Presión , Pie , Marcha , Humanos , Reproducibilidad de los Resultados , Zapatos
18.
Sensors (Basel) ; 17(4)2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420216

RESUMEN

In this work, fibre Bragg gratings (FBGs) were inscribed in two different undoped poly- (methyl methacrylate) (PMMA) polymer optical fibres (POFs) using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs) were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process) have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology.

19.
Sensors (Basel) ; 17(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065518

RESUMEN

Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.

20.
Nanotechnology ; 26(40): 405601, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26374133

RESUMEN

This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA