RESUMEN
Regenerative failure in the mammalian optic nerve is generally attributed to axotomy-induced retinal ganglion cell (RGC) death, an insufficient intrinsic regenerative capacity, and an extrinsic inhibitory environment. Here, we show that a chemoattractive CXCL12/CXCR4-dependent mechanism prevents the extension of growth-stimulated axons into the distal nerve. The chemokine CXCL12 is chemoattractive toward axonal growth cones in an inhibitory environment, and these effects are entirely abolished by the specific knockout of its receptor, CXCR4 (CXCR4-/-), in cultured regenerating RGCs. Notably, 8% of naïve RGCs express CXCL12 and transport the chemokine along their axons in the nerve. Thus, axotomy causes its release at the injury site. However, most osteopontin-positive α-RGCs, the main neuronal population that survives optic nerve injury, express CXCR4 instead. Thus, CXCL12-mediated attraction prevents growth-stimulated axons from regenerating distally in the nerve, indicated by axons returning to the lesion site. Accordingly, specific depletion of CXCR4 in RGC reduces aberrant axonal growth and enables long-distance regeneration. Likewise, CXCL12 knockout in RGCs fully mimics these CXCR4-/- effects. Thus, active CXCL12/CXCR4-mediated entrapment of regenerating axons to the injury site contributes to regenerative failure in the optic nerve.
Asunto(s)
Axones/fisiología , Quimiocina CXCL12/genética , Regeneración Nerviosa/genética , Receptores CXCR4/genética , Animales , Axones/patología , Axotomía , Sistema Nervioso Central/crecimiento & desarrollo , Factores Quimiotácticos/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patologíaRESUMEN
Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3S/A knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3ß reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3ß KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2T/A). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2T/A in GSK3S/A RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.
Asunto(s)
Axones/fisiología , Sistema Nervioso Central/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Regeneración , Animales , Femenino , Péptidos y Proteínas de Señalización Intercelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/fisiología , Vaina de Mielina/fisiología , Regeneración Nerviosa , Proteínas del Tejido Nervioso/fisiología , Nervio Óptico/fisiología , Sistema Nervioso Periférico/fisiología , Fosforilación , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Nervio Ciático/fisiologíaRESUMEN
Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/ß(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3ß, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/ß(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/ß(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT: Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.
Asunto(s)
Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Tirosina/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Axones/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas de Sustitución del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Endogámicos C57BL , Nocodazol/farmacología , Paclitaxel/farmacología , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/crecimiento & desarrollo , Fosforilación , Nervio Ciático/patología , Sesquiterpenos/farmacologíaRESUMEN
Retinal ganglion cells (RGCs) do not normally regenerate injured axons, but die upon axotomy. Although IL-6-like cytokines are reportedly neuroprotective and promote optic nerve regeneration, their overall regenerative effects remain rather moderate. Here, we hypothesized that direct activation of the gp130 receptor by the designer cytokine hyper-IL-6 (hIL-6) might induce stronger RGC regeneration than natural cytokines. Indeed, hIL-6 stimulated neurite growth of adult cultured RGCs with significantly higher efficacy than CNTF or IL-6. This neurite growth promoting effect could be attributed to stronger activation of the JAK/STAT3 and PI3K/AKT/mTOR signaling pathways and was also observed in peripheral dorsal root ganglion neurons. Moreover, hIL-6 abrogated axon growth inhibition by central nervous system (CNS) myelin. Remarkably, continuous hIL-6 expression upon RGC-specific AAV transduction after optic nerve crush exerted stronger axon regeneration than other known regeneration promoting treatments such as lens injury and PTEN knockout, with some axons growing through the optic chiasm 6 weeks after optic nerve injury. Combination of hIL-6 with RGC-specific PTEN knockout further enhanced optic nerve regeneration. Therefore, direct activation of gp130 signaling might be a novel, clinically applicable approach for robust CNS repair.
Asunto(s)
Axones/fisiología , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/genética , Vaina de Mielina/metabolismo , Células Ganglionares de la Retina/citología , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Humanos , Interleucina-6/metabolismo , Ratones , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de SeñalRESUMEN
Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.
Asunto(s)
Quimiocina CXCL12/farmacología , Regeneración Nerviosa/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Células Cultivadas , Quimiocina CXCL12/uso terapéutico , Factor Neurotrófico Ciliar/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Proteína GAP-43/metabolismo , Compresión Nerviosa/efectos adversos , Neuritas/efectos de los fármacos , Neuritas/enzimología , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/fisiopatología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Transducción de Señal/efectos de los fármacos , Tubulina (Proteína)/metabolismoRESUMEN
Injured axons in the central nervous system (CNS) usually fail to regenerate, causing permanent disabilities. However, the knockdown of Pten knockout or treatment of neurons with hyper-IL-6 (hIL-6) transforms neurons into a regenerative state, allowing them to regenerate axons in the injured optic nerve and spinal cord. Transneuronal delivery of hIL-6 to the injured brain stem neurons enables functional recovery after severe spinal cord injury. Here we demonstrate that the beneficial hIL-6 and Pten knockout effects on axon growth are limited by the induction of tubulin detyrosination in axonal growth cones. Hence, cotreatment with parthenolide, a compound blocking microtubule detyrosination, synergistically accelerates neurite growth of cultured murine CNS neurons and primary RGCs isolated from adult human eyes. Systemic application of the prodrug dimethylamino-parthenolide (DMAPT) facilitates axon regeneration in the injured optic nerve and spinal cord. Moreover, combinatorial treatment further improves hIL-6-induced axon regeneration and locomotor recovery after severe SCI. Thus, DMAPT facilitates functional CNS regeneration and reduces the limiting effects of pro-regenerative treatments, making it a promising drug candidate for treating CNS injuries.
Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratones , Animales , Humanos , Axones/fisiología , Regeneración Nerviosa , Neuronas/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , MicrotúbulosRESUMEN
Mature retinal ganglion cells (RGCs) cannot normally regenerate axons into the injured optic nerve but can do so after lens injury. Astrocyte-derived ciliary neurotrophic factor and leukemia inhibitory factor have been identified as essential key factors mediating this effect. However, the outcome of this regeneration is still limited by inhibitors associated with the CNS myelin and the glial scar. The current study demonstrates that Taxol markedly enhanced neurite extension of mature RGCs and PC12 cells by stabilization of microtubules and desensitized axons toward myelin and chondroitin sulfate proteoglycan (CSPG) inhibition in vitro without reducing RhoA activation. In vivo, the local application of Taxol at the injury site of the optic nerve of rats enabled axons to regenerate beyond the lesion site but did not affect the intrinsic regenerative state of RGCs. Furthermore, Taxol treatment markedly increased lens injury-mediated axon regeneration in vivo, delayed glial scar formation, suppressed CSPG expression, and transiently reduced the infiltration of macrophages at the injury site. Thus, microtubule-stabilizing compounds such as Taxol might be promising candidates as adjuvant drugs in the treatment of CNS injuries particularly when combined with interventions stimulating the intrinsic regenerative state of neurons.
Asunto(s)
Axones/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Traumatismos del Nervio Óptico/patología , Paclitaxel/farmacología , Células Ganglionares de la Retina/citología , Moduladores de Tubulina/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/patología , Macrófagos/efectos de los fármacos , Vaina de Mielina/metabolismo , Factor de Crecimiento Nervioso/farmacología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Paclitaxel/uso terapéutico , Ratas , Ratas Sprague-Dawley , Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Factores de Tiempo , Moduladores de Tubulina/uso terapéutico , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but degenerate after axotomy. However, inflammatory stimulation (IS) enables RGCs to survive axotomy and regenerate axons in the injured optic nerve. Similar effects are achieved by the genetic deletion of phosphatase and tensin homolog (PTEN) and subsequent mammalian target of rapamycin (mTOR) activation. Here, we report that IS prevents the axotomy-induced decrease of mTOR activity in RGCs in a CNTF/LIF-dependent manner. Inactivation of mTOR significantly reduced the number of long axons regenerating in the optic nerve, but surprisingly, did not affect the initial switch of RGCs into the regenerative state, or the neuroprotective effects associated with IS. In vitro, inhibition of mTOR activity reduced regeneration on myelin or chondroitin sulfate proteoglycans (CSPGs), but not on a growth-permissive substrate. Thus, mTOR activity is not generally required for neuroprotection or switching mature neurons into an active regenerative state, but it is important for the maintenance of the axonal growth state and overcoming of inhibitory effects caused by myelin and CSPGs.
Asunto(s)
Axones/fisiología , Mediadores de Inflamación/fisiología , Regeneración Nerviosa/fisiología , Fármacos Neuroprotectores , Traumatismos del Nervio Óptico/prevención & control , Serina-Treonina Quinasas TOR/fisiología , Animales , Células Cultivadas , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/fisiología , Inhibición Neural/fisiología , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/fisiología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.
Asunto(s)
Terapia Genética/métodos , Interleucina-6/genética , Locomoción/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Axones/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Noqueados , Microinyecciones , Neuronas Motoras/fisiología , Fosfohidrolasa PTEN/genética , Núcleos del Rafe/citología , Núcleos del Rafe/fisiología , Recuperación de la Función , Factor de Transcripción STAT3/metabolismo , Neuronas Serotoninérgicas/fisiología , Índice de Severidad de la Enfermedad , Transducción de Señal , Médula Espinal/citología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Transducción GenéticaRESUMEN
After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the beneficial effects of LI. Here, we investigated the contribution of glial-derived ciliary neurotrophic factor (CNTF) to LI-mediated regeneration and neuroprotection using wild-type and CNTF-deficient mice. In wild-type mice, CNTF expression was strongly upregulated in retinal astrocytes, the JAK/STAT3 pathway was activated in RGCs, and RGCs were transformed into an active regenerative state after LI. Interestingly, retinal LIF expression was correlated with CNTF expression after LI. In CNTF-deficient mice, the neuroprotective and axon growth-promoting effects of LI were significantly reduced compared with wild-type animals, despite an observed compensatory upregulation of LIF expression in CNTF-deficient mice. The positive effects of LI and also zymosan were completely abolished in CNTF/LIF double knock-out mice, whereas LI-induced glial and macrophage activation was not compromised. In culture CNTF and LIF markedly stimulated neurite outgrowth of mature RGCs. These data confirm a key role for CNTF in directly mediating the neuroprotective and axon regenerative effects of inflammatory stimulation in the eye and identify LIF as an additional contributing factor.
Asunto(s)
Axones/inmunología , Axones/fisiología , Factor Neurotrófico Ciliar/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Células Ganglionares de la Retina/inmunología , Células Ganglionares de la Retina/fisiología , Animales , Axones/efectos de los fármacos , Células Cultivadas , Fármacos del Sistema Nervioso Central/toxicidad , Factor Neurotrófico Ciliar/genética , Quinasas Janus/metabolismo , Cristalino/lesiones , Factor Inhibidor de Leucemia/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/inmunología , Regeneración Nerviosa/fisiología , Neuritas/inmunología , Neuritas/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/inmunología , Neuroglía/fisiología , Traumatismos del Nervio Óptico/inmunología , Traumatismos del Nervio Óptico/fisiopatología , Retina/efectos de los fármacos , Retina/inmunología , Retina/fisiopatología , Células Ganglionares de la Retina/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Zimosan/toxicidadRESUMEN
Knockout of phosphatase and tensin homolog (PTEN-/-) is neuroprotective and promotes axon regeneration in mature neurons. Elevation of mTOR activity in injured neurons has been proposed as the primary underlying mechanism. Here we demonstrate that PTEN-/- also abrogates the inhibitory activity of GSK3 on collapsin response mediator protein 2 (CRMP2) in retinal ganglion cell (RGC) axons. Moreover, maintenance of GSK3 activity in Gsk3S/A knockin mice significantly compromised PTEN-/--mediated optic nerve regeneration as well as the activity of CRMP2, and to a lesser extent, mTOR. These GSK3S/A mediated negative effects on regeneration were rescued by viral expression of constitutively active CRMP2T/A, despite decreased mTOR activation. Gsk3S/A knockin or CRMP2 inhibition also decreased PTEN-/- mediated neurite growth of RGCs in culture and disinhibition towards CNS myelin. Thus, the GSK3/CRMP2 pathway is essential for PTEN-/- mediated axon regeneration. These new mechanistic insights may help to find novel strategies to promote axon regeneration.
Asunto(s)
Axones/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Regeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Animales , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Masculino , Ratones Noqueados , Neuritas/metabolismo , Nervio Óptico/metabolismo , Nervio Óptico/patología , Fosfohidrolasa PTEN/deficiencia , Fosforilación , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Muscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival. MLP accumulates in the cell body, the nucleus, and in axonal growth cones, which are significantly enlarged by its overexpression. Only the MLP fraction in growth cones is relevant for promoting axon extension. Additional data suggest that MLP acts as an actin cross-linker, thereby facilitating filopodia formation and increasing growth cone motility. Thus, MLP-mediated effects on actin could become a therapeutic strategy for promoting nerve repair.
Asunto(s)
Sistema Nervioso Central/metabolismo , Regulación de la Expresión Génica , Conos de Crecimiento/metabolismo , Proteínas con Dominio LIM/biosíntesis , Proteínas Musculares/biosíntesis , Regeneración Nerviosa , Nervio Óptico/fisiología , Células Ganglionares de la Retina/metabolismo , Proteínas de Transporte Vesicular/biosíntesis , Animales , Axotomía , Células COS , Sistema Nervioso Central/patología , Chlorocebus aethiops , Proteínas con Dominio LIM/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Ratas , Células Ganglionares de la Retina/patología , Proteínas de Transporte Vesicular/genéticaRESUMEN
Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.
Asunto(s)
Axones/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Proteínas con Dominio LIM/metabolismo , Masculino , Proteínas Musculares/metabolismo , RatasRESUMEN
Several eye diseases are associated with axonal injury in the optic nerve, which normally leads to degeneration of retinal ganglion cells (RGCs) and subsequently to loss of vision. There is experimental evidence that some members of the small heat shock protein family (HspBs) are upregulated upon optic nerve injury (ONI) in the retina and sufficient to promote RGC survival. These data raise the question as to whether other family members may play a similar role in this context. Here, we performed a comprehensive comparative study comprising all HspBs in an experimental model of ONI. We found that five HspBs were expressed in the adult rat retina at control conditions but only HspB1 and HspB5 were upregulated in response to ONI. Furthermore, HspB1 and HspB5 were constitutively phosphorylated in Müller cells at serine 15 and serine 59, respectively. In RGCs, phosphorylation was stimulated by ONI and occurred at serine 86 of HspB1 and at serine 19 and 45 of HspB5. These data suggest that of all small heat shock proteins, only HspB1 and HspB5 might be of protective value for RGCs after ONI and that this process might be regulated by phosphorylation at serine 86 of HspB1 and serine 19 and serine 45 of HspB5. The molecular targets of phosphoHspB1 and phosphoHspB5 remain to be identified.
Asunto(s)
Cristalinas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroprotección/fisiología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Animales , Femenino , Fosforilación , Ratas , Ratas Sprague-Dawley , Regulación hacia ArribaRESUMEN
Muscle LIM protein (MLP) is a member of the cysteine rich protein family and has so far been regarded as a muscle-specific protein that is mainly involved in myogenesis and the organization of cytoskeletal structure in myocytes, respectively. The current study demonstrates for the first time that MLP expression is not restricted to muscle tissue, but is also found in the rat naive central nervous system. Using quantitative PCR, Western blot and immunohistochemical analyses we detected MLP in the postnatal rat retina, specifically in the somas and dendritic arbors of cholinergic amacrine cells (AC) of the inner nuclear layer and the ganglion cell layer (displaced AC). Induction of MLP expression started at embryonic day 20 and peaked between postnatal days 7 and 14. It subsequently decreased again to non-detectable protein levels after postnatal day 28. MLP was identified in the cytoplasm and dendrites but not in the nucleus of AC. Thus, retinal MLP expression correlates with the morphologic and functional development of cholinergic AC, suggesting a potential role of this protein in postnatal maturation and making MLP a suitable marker for these neurons.
Asunto(s)
Células Amacrinas/metabolismo , Neuronas Colinérgicas/metabolismo , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Células Ganglionares de la Retina/metabolismo , Células Amacrinas/ultraestructura , Animales , Animales Recién Nacidos , Diferenciación Celular , Neuronas Colinérgicas/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Ratas , Células Ganglionares de la Retina/ultraestructuraRESUMEN
Promotion of axonal growth of injured DRG neurons improves the functional recovery associated with peripheral nerve regeneration. Both isoforms of glycogen synthase kinase 3 (GSK3; α and ß) are phosphorylated and inactivated via phosphatidylinositide 3-kinase (PI3K)/AKT signalling upon sciatic nerve crush (SNC). However, the role of GSK3 phosphorylation in this context is highly controversial. Here we use knock-in mice expressing GSK3 isoforms resistant to inhibitory PI3K/AKT phosphorylation, and unexpectedly find markedly accelerated axon growth of DRG neurons in culture and in vivo after SNC compared with controls. Moreover, this enhanced regeneration strikingly accelerates functional recovery after SNC. These effects are GSK3 activity dependent and associated with elevated MAP1B phosphorylation. Altogether, our data suggest that PI3K/AKT-mediated inhibitory phosphorylation of GSK3 limits the regenerative outcome after peripheral nerve injury. Therefore, suppression of this internal 'regenerative break' may potentially provide a new perspective for the clinical treatment of nerve injuries.
Asunto(s)
Glucógeno Sintasa Quinasa 3/genética , Regeneración Nerviosa/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Nervio Ciático/lesiones , Animales , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Transgénicos , Compresión Nerviosa , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Recuperación de la Función , Nervio Ciático/metabolismo , Transducción de SeñalRESUMEN
Axonal injury in the optic nerve is associated with retinal ganglion cell (RGC) degeneration and irreversible loss of vision. However, inflammatory stimulation (IS) by intravitreal injection of Pam3Cys transforms RGCs into an active regenerative state enabling these neurons to survive injury and to regenerate axons into the injured optic nerve. Although morphological changes have been well studied, the functional correlates of RGCs transformed either into a de- or regenerating state at a sub-cellular level remain unclear. In the current study, we investigated the signal propagation in single intraretinal axons as well as characteristic activity features of RGCs in a naive, a degenerative or a regenerative state in ex vivo retinae 1 week after either optic nerve cut alone (ONC) or additional IS (ONC + IS). Recordings of single RGCs using high-density microelectrode arrays demonstrate that the mean intraretinal axonal conduction velocity significantly decreased within the first week after ONC. In contrast, when ONC was accompanied by regenerative Pam3Cys treatment the mean intraretinal velocity was undistinguishable from control RGCs, indicating a protective effect on the proximal axon. Spontaneous RGC activity decreased for the two most numerous RGC types (ON- and OFF-sustained cells) within one post-operative week, but did not significantly increase in RGCs after IS. The analysis of light-induced activity revealed that RGCs in ONC animals respond on average later and with fewer spikes than control RGCs. IS significantly improved the responsiveness of the two studied RGC types. These results show that the transformation into a regenerative state by IS preserves, at least transiently, the physiological functional properties of injured RGCs.
RESUMEN
PURPOSE: After injury of the optic nerve, mature retinal ganglion cells (RGCs) are normally unable to regenerate axons and undergo apoptosis. However, inflammatory stimulation in the eye induced by the release of beta/gamma-crystallins from the injured lens or intravitreal zymosan injection transforms RGCs into an active regenerative state, protecting these neurons from cell death and allowing them to regenerate axons back into the optic nerve. METHODS: The authors tested whether intravitreal application of the selective, water-soluble, toll-like receptor 2 agonist Pam(3)Cys can delay axotomized RGC cell death and stimulate the regeneration of axons using an in vitro and in vivo paradigm. RESULTS: Intravitreal injection of Pam(3)Cys, as lens injury (LI), induced the upregulation of ciliary neurotrophic factor and glial fibrillary acidic protein expression in retinal glia accompanied by the activation of the JAK/STAT3 pathway in RGCs. As a consequence, RGCs switched to a regenerative state, indicated by a significant upregulation of GAP43 expression and increased neurite outgrowth of RGCs in culture. Repeated intravitreal Pam(3)Cys application in vivo induced neuroprotective effects and caused stronger axon regeneration in the injured optic nerve than observed after LI. CONCLUSIONS: Pam(3)Cys may be a suitable agent for stimulating CNS regeneration.