Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genes Dev ; 29(17): 1795-800, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341557

RESUMEN

The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14.


Asunto(s)
Reparación del ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Histonas/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/metabolismo , Acetilación , Daño del ADN , Histonas/química , Histonas/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 46(1): 421-430, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29145630

RESUMEN

Yaf9 is an integral part of the NuA4 acetyltransferase and the SWR1 chromatin remodeling complexes. Here, we show that Yaf9 associates with acetylated histone H3 with high preference for H3K27ac. The crystal structure of the Yaf9 YEATS domain bound to the H3K27ac peptide reveals that the sequence C-terminal to K27ac stabilizes the complex. The side chain of K27ac inserts between two aromatic residues, mutation of which abrogates the interaction in vitro and leads in vivo to phenotypes similar to YAF9 deletion, including loss of SWR1-dependent incorporation of variant histone H2A.Z. Our findings reveal the molecular basis for the recognition of H3K27ac by a YEATS reader and underscore the importance of this interaction in mediating Yaf9 function within the NuA4 and SWR1 complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
3.
Proc Natl Acad Sci U S A ; 114(7): E1072-E1080, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137841

RESUMEN

MYC is a major cancer driver but is documented to be a difficult therapeutic target itself. Here, we report on the biological activity, the structural basis, and therapeutic effects of the family of multitargeted compounds that simultaneously disrupt functions of two critical MYC-mediating factors through inhibiting the acetyllysine binding of BRD4 and the kinase activity of PI3K. We show that the dual-action inhibitor impairs PI3K/BRD4 signaling in vitro and in vivo and affords maximal MYC down-regulation. The concomitant inhibition of PI3K and BRD4 blocks MYC expression and activation, promotes MYC degradation, and markedly inhibits cancer cell growth and metastasis. Collectively, our findings suggest that the dual-activity inhibitor represents a highly promising lead compound for the development of novel anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Morfolinas/farmacología , Metástasis de la Neoplasia/prevención & control , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Piranos/farmacología , Tiofenos/farmacología , Factores de Transcripción/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Proteínas de Ciclo Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Morfolinas/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Proteínas de Neoplasias/fisiología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuroblastoma/secundario , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Conformación Proteica , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/fisiología , Piranos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Tiofenos/uso terapéutico , Factores de Transcripción/química , Factores de Transcripción/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Chem Biol ; 12(9): 662-8, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538025

RESUMEN

The field of chromatin biology has been advancing at an accelerated pace. Recent discoveries of previously uncharacterized sites and types of post-translational modifications (PTMs) and the identification of new sets of proteins responsible for the deposition, removal, and reading of these marks continue raising the complexity of an already exceedingly complicated biological phenomenon. In this Perspective article we examine the biological importance of new types and sites of histone PTMs and summarize the molecular mechanisms of chromatin engagement by newly discovered epigenetic readers. We also highlight the imperative role of structural insights in understanding PTM-reader interactions and discuss future directions to enhance the knowledge of PTM readout.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Epigénesis Genética , Histonas/química , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Humanos , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Estructura Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo
5.
Nat Chem Biol ; 12(6): 396-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27089029

RESUMEN

The discovery of new histone modifications is unfolding at startling rates; however, the identification of effectors capable of interpreting these modifications has lagged behind. Here we report the YEATS domain as an effective reader of histone lysine crotonylation, an epigenetic signature associated with active transcription. We show that the Taf14 YEATS domain engages crotonyllysine via a unique π-π-π-stacking mechanism and that other YEATS domains have crotonyllysine-binding activity.


Asunto(s)
Epigénesis Genética , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Histonas/química , Lisina/química , Modelos Moleculares , Estructura Molecular , Dominios Proteicos
6.
Nucleic Acids Res ; 44(1): 472-84, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26626149

RESUMEN

BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Cromatina/genética , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Nucleosomas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Alineación de Secuencia
7.
Nucleic Acids Res ; 44(13): 6102-12, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27016734

RESUMEN

Histone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription. We detail the molecular mechanisms by which H3T3ph/K4me3/T6ph switches mediate activities of H3K4me3-binding proteins, including those containing plant homeodomain (PHD) and double Tudor reader domains. Our results derived from nuclear magnetic resonance chemical shift perturbation analysis, orthogonal binding assays and cell fluorescence microscopy studies reveal a strong anti-correlation between histone H3T3/T6 phosphorylation and retention of PHD finger proteins in chromatin during mitosis. Together, our findings uncover the mechanistic rules of chromatin engagement for H3K4me3-specific readers during cell division.


Asunto(s)
Cromatina/genética , Heterocromatina/genética , Mitosis/genética , Procesamiento Proteico-Postraduccional/genética , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Metilación , Fosforilación , Unión Proteica/genética , Dominio Tudor/genética
8.
Bioorg Med Chem ; 25(16): 4368-4374, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28693916

RESUMEN

Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.


Asunto(s)
Bacteroides fragilis/enzimología , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Piruvatos/farmacología , Carboxiliasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Piruvatos/síntesis química , Piruvatos/química , Relación Estructura-Actividad
9.
Biochim Biophys Acta ; 1854(8): 1001-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25936776

RESUMEN

Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate. It is the penultimate enzyme in both the mandelate pathway and the d-phenylglycine degradation pathway. The ThDP-dependent Enzyme Engineering Database (TEED) now lists more than 800 sequences annotated as BFDCs, including one from Mycobacterium smegmatis (MsBFDC). However, there is no evidence that either pathway for benzoylformate formation exists in the M. smegmatis genome. Further, sequence alignments of MsBFDC with the well characterized enzyme isolated from Pseudomonas putida (PpBFDC) indicate that there will be active site substitutions in MsBFDC likely to reduce activity with benzoylformate. Taken together these data would suggest that the annotation is unlikely to be correct. To test this hypothesis the putative MsBFDC was cloned, expressed, purified, and the X-ray structure was solved to a resolution of 2.2Å. While showing no evidence for ThDP in the active site, the structure was very similar to that of PpBFDC. A number of 2-oxo acids were tested as substrates. For MsBFDC the K(m) value for benzoylformate was ~23 mM, nearly 100-fold greater than that of PpBFDC while the k(cat) value was reduced 60-fold. These values would suggest that benzoylformate is not the physiological substrate for this enzyme, and that annotation as a 2-oxo acid decarboxylase may be more appropriate.


Asunto(s)
Proteínas Bacterianas/química , Carboxiliasas/química , Glioxilatos/química , Ácidos Mandélicos/química , Mycobacterium smegmatis/enzimología , Tiamina Pirofosfato/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glioxilatos/metabolismo , Cinética , Ácidos Mandélicos/metabolismo , Mycobacterium smegmatis/genética , Tiamina Pirofosfato/metabolismo
10.
Biochemistry ; 53(13): 2145-52, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24628377

RESUMEN

Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.


Asunto(s)
Piruvato Descarboxilasa/metabolismo , Tiamina Pirofosfato/metabolismo , Tiamina/metabolismo , Dicroismo Circular , Transporte de Electrón , Estructura Molecular , Piruvato Descarboxilasa/química , Tiamina/química , Tiamina Pirofosfato/química
11.
Biochemistry ; 53(27): 4358-67, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24956165

RESUMEN

The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer-monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer-tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.


Asunto(s)
Proteínas Bacterianas/química , Carboxiliasas/química , Proteínas Bacterianas/genética , Carboxiliasas/genética , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Puntual , Desnaturalización Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pseudomonas putida/enzimología
12.
Biochemistry ; 52(18): 3028-30, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23607689

RESUMEN

It is widely accepted that, in thiamin diphosphate (ThDP)-dependent enzymes, much of the rate acceleration is provided by the cofactor. Inter alia, the reactive conformation of ThDP, known as the V-conformation, has been attributed to the presence of a bulky hydrophobic residue located directly below the cofactor. Here we report the use of site-saturation mutagenesis to generate variants of this residue (Leu403) in benzoylformate decarboxylase. The observed 3 orders of magnitude range in k(cat)/K(m) values suggested that conformational changes in the cofactor could be influencing catalysis. However, X-ray structures of several variants were determined, and there was remarkably little change in ThDP conformation. Rather, it seemed that, once the V-conformation was attained, residue size and hydrophobicity were more important for enzyme activity.


Asunto(s)
Carboxiliasas/metabolismo , Tiamina Pirofosfato/química , Carboxiliasas/química , Carboxiliasas/genética , Conformación Molecular , Mutagénesis Sitio-Dirigida , Tiamina Pirofosfato/metabolismo
13.
Bioorg Chem ; 43: 26-36, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22245019

RESUMEN

Thiamin diphosphate (ThDP) is the biologically active form of vitamin B(1), and ThDP-dependent enzymes are found in all forms of life. The catalytic mechanism of this family requires the formation of a common intermediate, the 2α-carbanion-enamine, regardless of whether the enzyme is involved in C-C bond formation or breakdown, or even formation of C-N, C-O and C-S bonds. This demands that the enzymes must screen substrates prior to, and/or after, formation of the common intermediate. This review is focused on the group for which the second step is the protonation of the 2α-carbanion, i.e., the ThDP-dependent decarboxylases. Based on kinetic data, sequence/structure alignments and mutagenesis studies the factors involved in substrate specificity have been identified.


Asunto(s)
Carboxiliasas/metabolismo , Tiamina Pirofosfato/metabolismo , Acilcoenzima A/metabolismo , Bacterias/enzimología , Carboxiliasas/química , Carboxiliasas/genética , Dominio Catalítico , Glioxilatos/metabolismo , Ácidos Mandélicos/metabolismo , Mutagénesis Sitio-Dirigida , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato
14.
Nat Commun ; 9(1): 4574, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385749

RESUMEN

The YEATS domain has been identified as a reader of histone acylation and more recently emerged as a promising anti-cancer therapeutic target. Here, we detail the structural mechanisms for π-π-π stacking involving the YEATS domains of yeast Taf14 and human AF9 and acylated histone H3 peptides and explore DNA-binding activities of these domains. Taf14-YEATS selects for crotonyllysine, forming π stacking with both the crotonyl amide and the alkene moiety, whereas AF9-YEATS exhibits comparable affinities to saturated and unsaturated acyllysines, engaging them through π stacking with the acyl amide. Importantly, AF9-YEATS is capable of binding to DNA, whereas Taf14-YEATS is not. Using a structure-guided approach, we engineered a mutant of Taf14-YEATS that engages crotonyllysine through the aromatic-aliphatic-aromatic π stacking and shows high selectivity for the crotonyl H3K9 modification. Our findings shed light on the molecular principles underlying recognition of acyllysine marks and reveal a previously unidentified DNA-binding activity of AF9-YEATS.


Asunto(s)
ADN/metabolismo , Código de Histonas , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Acetilación , Acilación , Cristalografía por Rayos X , ADN/ultraestructura , Humanos , Lisina/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/ultraestructura
15.
J Mol Biol ; 429(13): 2066-2074, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27697561

RESUMEN

The plant homeodomain (PHD) finger of Set3 binds methylated lysine 4 of histone H3 in vitro and in vivo; however, precise selectivity of this domain has not been fully characterized. Here, we explore the determinants of methyllysine recognition by the PHD fingers of Set3 and its orthologs. We use X-ray crystallographic and spectroscopic approaches to show that the Set3 PHD finger binds di- and trimethylated states of H3K4 with comparable affinities and employs similar molecular mechanisms to form complexes with either mark. Composition of the methyllysine-binding pocket plays an essential role in determining the selectivity of the PHD fingers. The finding that the histone-binding activity is not conserved in the PHD finger of Set4 suggests different functions for the Set3 and Set4 paralogs.


Asunto(s)
Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Cristalografía por Rayos X , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica
16.
Structure ; 25(4): 650-654.e2, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28286003

RESUMEN

The monocytic leukemia zinc-finger protein-related factor (MORF) is a transcriptional coactivator and a catalytic subunit of the lysine acetyltransferase complex implicated in cancer and developmental diseases. We have previously shown that the double plant homeodomain finger (DPF) of MORF is capable of binding to acetylated histone H3. Here we demonstrate that the DPF of MORF recognizes many newly identified acylation marks. The mass spectrometry study provides comprehensive analysis of H3K14 acylation states in vitro and in vivo. The crystal structure of the MORF DPF-H3K14butyryl complex offers insight into the selectivity of this reader toward lipophilic acyllysine substrates. Together, our findings support the mechanism by which the acetyltransferase MORF promotes spreading of histone acylation.


Asunto(s)
Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Acetilación , Sitios de Unión , Cristalografía por Rayos X , Células HeLa , Humanos , Lisina/química , Espectrometría de Masas , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional
17.
Nat Commun ; 8(1): 1088, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057918

RESUMEN

Recognition of modified histones by "reader" proteins constitutes a key mechanism regulating diverse chromatin-associated processes important for normal and neoplastic development. We recently identified the YEATS domain as a novel acetyllysine-binding module; however, the functional importance of YEATS domain-containing proteins in human cancer remains largely unknown. Here, we show that the YEATS2 gene is highly amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell growth and survival. YEATS2 binds to acetylated histone H3 via its YEATS domain. The YEATS2-containing ATAC complex co-localizes with H3K27 acetylation (H3K27ac) on the promoters of actively transcribed genes. Depletion of YEATS2 or disruption of the interaction between its YEATS domain and acetylated histones reduces the ATAC complex-dependent promoter H3K9ac levels and deactivates the expression of essential genes. Taken together, our study identifies YEATS2 as a histone H3K27ac reader that regulates a transcriptional program essential for NSCLC tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Histonas/metabolismo , Neoplasias Pulmonares/fisiopatología , Acetilación , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Humanos , Neoplasias Pulmonares/genética , Procesamiento Proteico-Postraduccional/genética
18.
Transcription ; 7(1): 14-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26934307

RESUMEN

The YEATS domains of AF9 and Taf14 have recently been found to recognize the histone H3K9ac modification. In this commentary, we discuss the mechanistic and biological implications of this interaction. We compare structures of the YEATS-H3K9ac complexes the highlighting a novel mechanism for the acetyllysine recognition through the aromatic cage. We also summarize the latest findings underscoring a critical role of the acetyllysine binding function of AF9 and Taf14 in transcriptional regulation and DNA repair.


Asunto(s)
Lisina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Acetilación , Sitios de Unión , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/genética , Transcripción Genética
19.
ACS Chem Biol ; 11(3): 547-53, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26726824

RESUMEN

Methyllysine post-translational modifications (PTMs) of histones create binding sites for evolutionarily conserved reader domains that link nuclear host proteins and chromatin-modifying complexes to specific genomic regions. In the context of these events, adjacent histone PTMs are capable of altering the binding activity of readers toward their target marks. This provides a mechanism of "combinatorial readout" of PTMs that can enhance, decrease, or eliminate the association of readers with chromatin. In this Perspective, we focus on recent studies describing the impact of dynamic phospho-serine/threonine/tyrosine marks on the interaction of methyllysine readers with histones, summarize mechanistic aspects of the phospho/methyl readout, and highlight the significance of crosstalk between these PTMs. We also demonstrate that in addition to inhibiting binding and serving as a true switch, promoting dissociation of the methyllysine readers from chromatin, the phospho/methyl combination can act together in a cooperative manner--thus adding a new layer of regulatory information that can be encoded in these dual histone PTMs.


Asunto(s)
Epigénesis Genética , Histonas/metabolismo , Lisina/metabolismo , Sitios de Unión , Cromatina , Histonas/genética , Humanos , Metilación , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional
20.
Cell Rep ; 16(12): 3195-3207, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653685

RESUMEN

MORC3 is linked to inflammatory myopathies and cancer; however, the precise role of MORC3 in normal cell physiology and disease remains poorly understood. Here, we present detailed genetic, biochemical, and structural analyses of MORC3. We demonstrate that MORC3 is significantly upregulated in Down syndrome and that genetic abnormalities in MORC3 are associated with cancer. The CW domain of MORC3 binds to the methylated histone H3K4 tail, and this interaction is essential for recruitment of MORC3 to chromatin and accumulation in nuclear bodies. We show that MORC3 possesses intrinsic ATPase activity that requires DNA, but it is negatively regulated by the CW domain, which interacts with the ATPase domain. Natively linked CW impedes binding of the ATPase domain to DNA, resulting in a decrease in the DNA-stimulated enzymatic activity. Collectively, our studies provide a molecular framework detailing MORC3 functions and suggest that its modulation may contribute to human disease.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histidina Quinasa/metabolismo , Adenosina Trifosfatasas/química , Células Cultivadas , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Síndrome de Down/genética , Síndrome de Down/metabolismo , Histidina Quinasa/química , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Conformación Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA