Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 14(11): e1007773, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30452449

RESUMEN

Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen acts at multiple points in the ISC lineage with an ISC-intrinsic function in controlling early commitment events of the stem cells and functions in terminally differentiated cells to further limit the proliferation of ISCs. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts.


Asunto(s)
Células Madre Adultas/citología , Autorrenovación de las Células/genética , Autorrenovación de las Células/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Células Madre Adultas/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/antagonistas & inhibidores , Intestinos/citología , Masculino , Modelos Biológicos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Interferencia de ARN , Proteínas de Unión al ARN , Receptores Notch/metabolismo , Transducción de Señal
2.
Med Sci (Paris) ; 29(1): 75-81, 2013 Jan.
Artículo en Francés | MEDLINE | ID: mdl-23351697

RESUMEN

Constant renewal of cells occurs in most tissues throughout the adult lifetime and is insured by the activity of resident stem cells. Recent work has demonstrated the presence of adult stem cells in the Drosophila intestine and consequently, the Drosophila intestine has become a powerful model to understand adult stem cells in vivo. In this review, we summarize our current understanding of the mechanisms controlling cell fate decisions of the intestinal stem cells with a particular focus on the role of the Notch pathway in this process. We also summarize what is known about proliferation control of the intestinal stem cells, which is crucial to maintain tissue homeostasis during normal and environmentally stressful conditions.


Asunto(s)
Células Madre Adultas , Drosophila melanogaster/citología , Animales , Proliferación Celular , Homeostasis , Intestinos/citología , Modelos Animales , Receptores Notch
3.
Curr Biol ; 33(3): 517-532.e5, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640763

RESUMEN

The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Axones/fisiología , Drosophila/genética , Receptores ErbB/metabolismo , Autofagia , Sinapsis/fisiología , Receptores de Péptidos de Invertebrados/metabolismo
4.
Science ; 367(6482): 1112-1119, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32139539

RESUMEN

The genome versus experience dichotomy has dominated understanding of behavioral individuality. By contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using Drosophila melanogaster, we demonstrate a link between stochastic variation in brain wiring and behavioral individuality. A visual system circuit called the dorsal cluster neurons (DCN) shows nonheritable, interindividual variation in right/left wiring asymmetry and controls object orientation in freely walking flies. We show that DCN wiring asymmetry instructs an individual's object responses: The greater the asymmetry, the better the individual orients toward a visual object. Silencing DCNs abolishes correlations between anatomy and behavior, whereas inducing DCN asymmetry suffices to improve object responses.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Individualidad , Neurogénesis , Campos Visuales/fisiología , Vías Visuales/crecimiento & desarrollo , Animales , Encéfalo/anatomía & histología , Drosophila melanogaster/genética , Variación Genética , Orientación/fisiología , Vías Visuales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA