Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400273, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876477

RESUMEN

Poly(butylene succinate) (PBS) forms small and imperfect crystals of low melting temperature at high supercooling of the melt. Slow heating allows reorganization of the obtained semicrystalline structure with the changes of the crystallinity and of the size and perfection of crystals analyzed by differential scanning calorimetry (DSC) and temperature-resolved X-ray scattering techniques. Crystals generated at 20 °C begin to melt and reorganize at a few K higher temperature with their initial imperfection and thickness unchanged upon heating to 70-80 °C. Slow heating to temperatures higher than 70-80 °C yields a distinct exothermic peak in the DSC scan, paralleled by detection of crystals of larger size/higher perfection, beginning to melt at ≈100 °C. These observations suggest that below 70-80 °C, reorganization of the semicrystalline morphology is constrained such that only minor and local improvement of the structure of crystals are possible. The formation of both perfect and thicker crystal lamellae at higher temperature proceeds via melting of imperfect crystals followed by melt-recrystallization as for PBS solid-state thickening is impossible. The study shows the limit of low-temperature reorganization processes when not involving both complete melting of crystals and rearrangement of the lamellar-stack structure.

2.
Macromolecules ; 57(7): 3066-3080, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38616808

RESUMEN

We report the results of a study focusing on the influence of crystallization kinetics and flow behavior on structural inhomogeneities in 3D-printed parts made from polyamide 12 (PA12) and poly(lactic acid) (PLA) by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), fast scanning calorimetry (FSC), and wide-angle X-ray diffraction (WAXD). Temperature-dependent WAXD measurements on the neat PLA filament reveal that PLA forms a single orthorhombic α phase during slow cooling and subsequent 2nd heating. The PA12 filament shows a well pronounced polymorphism with a reversible solid-solid phase transition between the (pseudo)hexagonal γ phase near room temperature and the monoclinic α' phase above the Brill transition temperature TB = 140 °C. The influence of the print bed temperature Tb on structure formation, polymorphic state, and degree of crystallinity χc of the 3D-printed parts is investigated by height and depth-dependent WAXD scans and compared with that of 3D-printed single layers, used as a reference. It is found that the heat transferred from successive layers has a strong influence on the polymorphic state of PA12 since a superimposed mixture of γ and α phases is present in the 3D-printed parts. In the case of PLA, a single α phase is formed. The print bed temperature has, in comparison to PA12, a major influence on the degree of crystallinity χc and thus the homogeneity of the 3D-printed parts, especially close to the print bed. By comparing the obtained results from WAXD, DMA, DSC, and FSC measurements with relevant printing times, guidelines for 3D-printed parts with a homogeneous structure are derived.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA