Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biophys J ; 104(2): 505-15, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442873

RESUMEN

Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller.


Asunto(s)
Adaptación Fisiológica , Homeostasis , Sensación , Retroalimentación Fisiológica , Cinética
2.
Microbiome ; 11(1): 143, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370188

RESUMEN

BACKGROUND: Whole microbiome RNASeq (metatranscriptomics) has emerged as a powerful technology to functionally interrogate microbial communities. A key challenge is how best to process, analyze, and interpret these complex datasets. In a typical application, a single metatranscriptomic dataset may comprise from tens to hundreds of millions of sequence reads. These reads must first be processed and filtered for low quality and potential contaminants, before being annotated with taxonomic and functional labels and subsequently collated to generate global bacterial gene expression profiles. RESULTS: Here, we present MetaPro, a flexible, massively scalable metatranscriptomic data analysis pipeline that is cross-platform compatible through its implementation within a Docker framework. MetaPro starts with raw sequence read input (single-end or paired-end reads) and processes them through a tiered series of filtering, assembly, and annotation steps. In addition to yielding a final list of bacterial genes and their relative expression, MetaPro delivers a taxonomic breakdown based on the consensus of complementary prediction algorithms, together with a focused breakdown of enzymes, readily visualized through the Cytoscape network visualization tool. We benchmark the performance of MetaPro against two current state-of-the-art pipelines and demonstrate improved performance and functionality. CONCLUSIONS: MetaPro represents an effective integrated solution for the processing and analysis of metatranscriptomic datasets. Its modular architecture allows new algorithms to be deployed as they are developed, ensuring its longevity. To aid user uptake of the pipeline, MetaPro, together with an established tutorial that has been developed for educational purposes, is made freely available at https://github.com/ParkinsonLab/MetaPro . The software is freely available under the GNU general public license v3. Video Abstract.


Asunto(s)
Microbiota , Microbiota/genética , Programas Informáticos , Algoritmos , Bacterias/genética , Genes Bacterianos
3.
Biotechnol Bioeng ; 108(3): 645-54, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20967799

RESUMEN

Synthetic biology includes an effort to logically control cellular behavior. One long-term goal is to implement medical interventions inside living cells, creating intracellular "disease fighters"; one may imagine a system that detects viral infection and responds to halt the spread of the virus. Here, we explore a system designed to display some of the qualitative features that such disease prevention systems should have, while not claiming that the system itself has any medical application. An intracellular disease prevention mechanism should: lie dormant in the absence of the disease state; detect the onset of a lethal disease pathway; respond to halt or mitigate the disease's effects; and be subject to external deactivation when required. We have created a device that displays these properties, in the highly simplified case of a bacterial viral disease. Our system detects the onset of the lytic phase of bacteriophage lambda in Escherichia coli, responds by preventing this lethal pathway from being followed, and is deactivated by a temperature shift. We have formulated a mathematical model of the engineered system, using parameters obtained from the literature and by local experimental measurement, and shown that the model captures the essential experimental behavior of the system in most parameter regimes.


Asunto(s)
Bacteriófago lambda/crecimiento & desarrollo , Escherichia coli/virología , Interacciones Huésped-Patógeno , Viabilidad Microbiana , Modelos Teóricos , Biología Sintética/métodos
4.
J R Soc Interface ; 18(177): 20200976, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33906384

RESUMEN

Determining the underlying principles behind biological regulation is important for understanding the principles of life, treating complex diseases and creating de novo synthetic biology. Buffering-the use of reservoirs of molecules to maintain molecular concentrations-is a widespread and important mechanism for biological regulation. However, a lack of theory has limited our understanding of its roles and quantified effects. Here, we study buffering in energy metabolism using control theory and novel buffer analysis. We find that buffering can enable the simultaneous, independent control of multiple coupled outputs. In metabolism, adenylate kinase and AMP deaminase enable simultaneous control of ATP and adenylate energy ratios, while feedback on metabolic pathways is fundamentally limited to controlling one of these outputs. We also quantify the regulatory effects of the phosphagen system-the above buffers and creatine kinase-revealing which mechanisms regulate which outputs. The results are supported by human muscle and mouse adipocyte data. Together, these results illustrate the synergy of feedback and buffering in molecular biology to simultaneously control multiple outputs.


Asunto(s)
Creatina Quinasa , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Animales , Creatina Quinasa/metabolismo , Ratones , Músculos
5.
J Theor Biol ; 266(4): 723-38, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20688080

RESUMEN

It has long been known to control theorists and engineers that integral feedback control leads to, and is necessary for, "perfect" adaptation to step input perturbations in most systems. Consequently, implementation of this robust control strategy in a synthetic gene network is an attractive prospect. However, the nature of genetic regulatory networks (density-dependent kinetics and molecular signals that easily reach saturation) implies that the design and construction of such a device is not straightforward. In this study, we propose a generic two-promoter genetic regulatory network for the purpose of exhibiting perfect adaptation; our treatment highlights the challenges inherent in the implementation of a genetic integral controller. We also present a numerical case study for a specific realization of this two-promoter network, "constructed" using commonly available parts from the bacterium Escherichia coli. We illustrate the possibility of optimizing this network's transient response via analogy to a linear, free-damped harmonic oscillator. Finally, we discuss extensions of this two-promoter network to a proportional-integral controller and to a three-promoter network capable of perfect adaptation under conditions where first-order protein removal effects would otherwise disrupt the adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Escherichia coli/genética , Retroalimentación Fisiológica , Redes Reguladoras de Genes/genética , Genes Sintéticos/genética , Simulación por Computador , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Represoras Lac/genética , Represoras Lac/metabolismo , Regiones Promotoras Genéticas/genética , Biología Sintética
6.
Cell Syst ; 5(5): 498-508.e23, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29055671

RESUMEN

Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology.


Asunto(s)
Homeostasis/fisiología , Adenosina Trifosfato , Animales , Tampones (Química) , Retroalimentación , Concentración de Iones de Hidrógeno , Mamíferos/fisiología , Modelos Biológicos
7.
ACS Synth Biol ; 2(10): 547-67, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23905721

RESUMEN

Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.


Asunto(s)
Biología Sintética , Modelos Biológicos
8.
Methods Enzymol ; 487: 279-317, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21187229

RESUMEN

A key aspect of the behavior of any system is the timescale on which it operates: when inputs change, do responses take milliseconds, seconds, minutes, hours, days, months? Does the system respond preferentially to inputs at certain timescales? These questions are well addressed by the methods of frequency response analysis. In this review, we introduce these methods and outline a procedure for applying this analysis directly to experimental data. This procedure, known as system identification, is a well-established tool in engineering systems and control theory and allows the construction of a predictive dynamic model of a biological system in the absence of any mechanistic details. When studying biochemical and genetic systems, the required experiments are not standard laboratory practice, but with advances in both our ability to measure system outputs (e.g., using fluorescent reporters) and our ability to generate precise inputs (with microfluidic chambers capable of changing cells' environments rapidly and under fine control), these frequency response methods are now experimentally practical for a wide range of biological systems, as evidenced by a number of successful recent applications of these techniques. We use a yeast G-protein signaling cascade as a running example, illustrating both theoretical concepts and practical considerations while keeping mathematical details to a minimum. The review aims to provide the reader with the tools required to design frequency response experiments for their own biological system and the background required to analyze and interpret the resulting data.


Asunto(s)
Fenómenos Bioquímicos , Biología Computacional , Fenómenos Genéticos , Proteínas de Unión al GTP/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA