RESUMEN
The emergence of multidrug resistance and increased pathogenicity in microorganisms is conferred by the presence of highly synchronized cell density dependent signalling pathway known as quorum sensing (QS). The QS hierarchy is accountable for the secretion of virulence phenotypes, biofilm formation and drug resistance. Hence, targeting the QS phenomenon could be a promising strategy to counteract the bacterial virulence and drug resistance. In the present study, artocarpesin (ACN), a 6-prenylated flavone was investigated for its capability to quench the synthesis of QS regulated virulence factors. From the results, ACN showed significant inhibition of secreted virulence phenotypes such as pyocyanin (80%), rhamnolipid (79%), protease (69%), elastase (84%), alginate (88%) and biofilm formation (88%) in opportunistic pathogen, Pseudomonas aeruginosa PAO1. Further, microscopic observation of biofilm confirmed a significant reduction in biofilm matrix when P. aeruginosa PAO1 was supplemented with ACN at its sub-MIC concentration. Quantitative gene expression studies showed the promising aspects of ACN in down regulation of several QS regulatory genes associated with production of virulence phenotypes. Upon treatment with sub-MIC of ACN, the bacterial colonization in the gut of Caenorhabditis elegans was potentially reduced and the survival rate was greatly improved. The promising QS inhibition activities were further validated through in silico studies, which put an insight into the mechanism of QS inhibition. Thus, ACN could be considered as possible drug candidate targeting chronic microbial infections.
Asunto(s)
Flavonas , Infecciones por Pseudomonas , Percepción de Quorum , Humanos , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/microbiología , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen in immunocompromised patients and accounts for mortality worldwide. Quorum sensing (QS) and QS mediated biofilm formation of P. aeruginosa increase the severity of infection in the host. New and effective therapeutics are in high demand to eliminate Pseudomonas infections. The current study investigated the quorum quenching and biofilm inhibition properties of alantolactone (ATL) against P. aeruginosa PAO1. The production of key virulence factors and biofilm components were affected in bacteria when treated with sub-MIC of ATL and further validated by qRT-PCR studies. The anti-infective potential of ATL was corroborated in an in vivo model with improved survival of infected Caenorhabditis elegans and reduced bacterial colonization. In silico studies suggested the molecular interactions of ATL to QS proteins as stable. Finally, ATL was explored in the present study to inhibit QS pathways and holds the potential to develop into an effective anti-infective agent against P. aeruginosa.
Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Caenorhabditis elegans/microbiología , Humanos , Lactonas , Sesquiterpenos de Eudesmano , Virulencia , Factores de Virulencia/metabolismoRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen emerging as a public health threat owing to their multidrug resistance profiles. The quorum sensing systems of P. aeruginosa play a pivotal role in the regulation of virulence and act as the target for the development of alternative therapeutics. The study discussed about anti-quorum sensing and antibiofilm properties of lignans (sesamin and sesamolin) found in Sesamum indicum (L.) against P. aeruginosa. The effect of lignans, sesamin and sesamolin on LasR/RhlR mediated virulence factor production, biofilm formation and bacterial motility were studied. To elucidate the mechanism of action of lignans on QS pathways, QS gene expression and in depth in silico analysis were performed. Both the lignans exerted anti-quorum sensing activity at 75 µg/ml without affecting the growth of bacteria. SA and SO exhibited decreased production of virulence factors such as pyocyanin, proteases, elastase and chitinase. The important biofilm constituents of P. aeruginosa including alginate, exopolysaccharides and rhamnolipids were strongly affected by the lignans. Likewise, plausible mechanism of action of lignans were determined through the down regulation of QS regulated gene expression, molecular docking and molecular simulation studies. The in vitro analysis was supported by C. elegans infection model. SA and SO rescued pre-infected worms within 8 days of post infection and reduced the colonization of bacteria inside the intestine due to the anti-infective properties of lignans. The lignans exhibited profound action on Las pathway rather than Rhl which was elucidated through in vitro and in silico assays. In silico pharmacokinetic analysis portrayed the opportunities to employ ligands as potential therapeutics for human use. The deep insights into the anti-QS, anti-biofilm and mechanism of action of lignans can contribute to the development of novel anti-infectives against pseuodmonal infections.
Asunto(s)
Lignanos , Infecciones por Pseudomonas , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Biopelículas , Caenorhabditis elegans , Dioxoles , Humanos , Lignanos/farmacología , Simulación del Acoplamiento Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Percepción de Quorum , Factores de Virulencia/genéticaRESUMEN
Correction for 'Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus' by Paramanantham Parasuraman et al., Photochem. Photobiol. Sci., 2019, DOI: 10.1039/c8pp00369f.
RESUMEN
Catheter-related bloodstream infections (CRBSIs) are one of the leading causes of high morbidity and mortality in hospitalized patients. The proper management, prevention and treatment of CRBSIs rely on the understanding of these highly resistant bacterial infections. The emergence of such a challenge to public health has resulted in the development of an alternative antimicrobial strategy called antimicrobial photodynamic therapy (aPDT). In the presence of a photosensitizer (PS), light of the appropriate wavelength, and molecular oxygen, aPDT generates reactive oxygen species (ROS) which lead to microbial cell death and cell damage. We investigated the enhanced antibacterial and antibiofilm activities of methylene blue conjugated carbon nanotubes (MBCNTs) on biofilms of E. coli and S. aureus using a laser light source at 670 nm with radiant exposure of 58.49 J cm-2. Photodynamic inactivation in test cultures showed 4.86 and 5.55 log10 reductions in E. coli and S. aureus, respectively. Biofilm inhibition assays, cell viability assays and EPS reduction assays showed higher inhibition in S. aureus than in E. coli, suggesting that pronounced ROS generation occurred due to photodynamic therapy in S. aureus. Results from a study into the mechanism of action proved that the cell membrane is the main target for photodynamic inactivation. Comparatively higher photodynamic inactivation was observed in Gram positive bacteria due to the increased production of free radicals inside these cells. From this study, we conclude that MBCNT can be used as a promising nanocomposite for the eradication of dangerous pathogens on medical devices.
Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Azul de Metileno/química , Azul de Metileno/farmacología , Nanotubos de Carbono/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Técnicas de Química Sintética , Escherichia coli/metabolismo , Escherichia coli/fisiología , Luz , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Azul de Metileno/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologíaRESUMEN
Cancer is one of the leading causes of death worldwide and it is estimated that the mortality rate of cancer will increase in the coming years. The etiology of the development and progression of cancer is multifactorial. Insights have been gained on the association between the human microbiome and tumor cell malignancy. A number of commensal microbe species are present in the human gut. They serve pivotal roles in maintaining several health and disease conditions, such as inflammatory bowel disease, irritable bowel syndrome, obesity and diabetes. Known major factors involved in cancer development include age, hormone levels, alcohol consumption, diet, being overweight, obesity, and infections, regardless of the type of cancer. Therefore, the present review aims to discuss the relationship between the gut microbiome and obesityassociated malignancies, including colorectal, gastric and liver cancer. Obesity has been reported to contribute to the development of numerous types of cancer primarily caused by high fatty food intake. In addition, obesityassociated microbiome alterations can lead to cancer and its progression. Dysbiosis of the gut microbiota can alter the metabolite profile, whilst increasing the levels of toxins, such as Bacteroides fragilis toxin and colibactin and cytolethal distending toxin, which are responsible for oncogenesis. The present review provides insights into the impact of gut microbiome dysbiosis on the progression of different types of cancers associated with obesity. It also discusses possible strategies for preserving a healthy gut microbiome. Different preclinical and clinical models are available for studying cancer development downstream of gut microbiome dysbiosis. Furthermore, the role of metabolites or drugs employed in colorectal, gastric and liver cancer therapy would be discussed.
Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Disbiosis , Obesidad/complicaciones , Carcinogénesis , Neoplasias Colorrectales/metabolismoRESUMEN
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Soil carries diverse microorganisms which maintain plant and soil health.The different types of recalcitrant soil pollutants affect the ecosystem and human health.Complex pollutants can be degraded through bioremediation using microorganisms/plantsMetagenomic approaches help to explore novel organisms and enzymes involved in bioremediation.
RESUMEN
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
RESUMEN
Microbial cells attached to inert or living surfaces adopt biofilm mode with self-produced exopolysaccharide matrix containing polysaccharides, proteins, and extracellular DNA, for protection from adverse external stimuli. Biofilms in hospitals and industries serve as a breeding ground for drug-resistant pathogens and ARG enrichment that are linked to pathogenicity and also impede industrial production process. Biofilm formation, including virulence and pathogenicity, is regulated through quorum sensing (QS), a means of bacterial cell to cell communication for cooperative physiological processes. Hence, QS inhibition through quorum quenching (QQ) is a feasible approach to inhibit biofilm formation. In contrast, biofilms have beneficial roles in promoting plant growth, biocontrol, and wastewater treatment. Furthermore, polymicrobial biofilms can harbour novel compounds and species of industrial and pharmaceutical interest. Hence, surveillance of biofilm microbiome structure and functional attributes is crucial to determine the extent of the risk it poses and to harness its bioactive potential. One of the most preferred approaches to delineate the microbiome is culture-independent metagenomics. In this context, this review article explores the biofilm microbiome in built and natural settings such as agriculture, household appliances, wastewater treatment plants, hospitals, microplastics, and dental biofilm. We have also discussed the recent reports on discoveries of novel QS and biofilm inhibitors through conventional, metagenomics, and machine learning approaches. Finally, we present biofilm-derived novel metagenome-assembled genomes (MAGs), genomes, and taxa of medical and industrial interest.
Asunto(s)
Metagenoma , Metagenómica , Biopelículas , Microplásticos , Preparaciones Farmacéuticas , Plásticos , Percepción de QuorumRESUMEN
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
RESUMEN
Cardiovascular diseases (CVDs) are one of the foremost causes of high morbidity and mortality globally. Preventive, diagnostic, and treatment measures available for CVDs are not very useful, which demands promising alternative methods. Nanoscience and nanotechnology open a new window in the area of CVDs with an opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues. The application of nanoparticles and nanocarriers in the area of cardiology has gathered much attention due to the properties such as passive and active targeting to the cardiac tissues, improved target specificity, and sensitivity. It has reported that more than 50% of CVDs can be treated effectively through the use of nanotechnology. The main goal of this review is to explore the recent advancements in nanoparticle-based cardiovascular drug carriers. This review also summarizes the difficulties associated with the conventional treatment modalities in comparison to the nanomedicine for CVDs.
Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Humanos , Nanomedicina , Factores de Riesgo , Resultado del TratamientoRESUMEN
The persistence of multidrug resistance among microorganisms has directed a mandate towards a hunt for the development of alternative therapeutic modalities. In this context, antimicrobial photodynamic therapy (aPDT) is sprouted as a novel strategy to mitigate biofilms and planktonic cells of pathogens. Nanoparticles (NPs) are reported with unique intrinsic and antimicrobial properties. Therefore, silver NPs (AgNPs) were investigated in this study to determine their ability to potentiate the aPDT of photosensitizer against Staphylococcus aureus and Pseudomonas aeruginosa. Biologically synthesized AgNPs were surface coated with methylene blue (MB) and studied for their aPDT against planktonic cells and biofilms of bacteria. The nano-conjugates (MB-AgNPs) were characterized for their size, shape and coated materials. MB-AgNPs showed significant phototoxicity against both forms of test bacteria and no toxicity was observed in the dark. Moreover, activity of MB-AgNPs was comparatively higher than that of the free MB, which concludes that MB-AgNPs could be an excellent alternative to combat antibiotic resistant bacteria.
RESUMEN
Purpose: Infections associated with medical devices that are caused by biofilms remain a considerable challenge for health care systems owing to their multidrug resistance patterns. Biofilms of Pseudomonas aeruginosa and Staphylococcus aureus can result in life-threatening situations which are tough to eliminate by traditional methods. Antimicrobial photodynamic inactivation (aPDT) constitutes an alternative method of killing deadly pathogens and their biofilms using reactive oxygen species (ROS). This study investigated the efficacy of enhanced in vitro aPDT of P. aeruginosa and S. aureus using malachite green conjugated to carboxyl-functionalized multi-walled carbon nanotubes (MGCNT). Both the planktonic cells and biofilms of test bacteria were demonstrated to be susceptible to the MGCNT conjugate. These MGCNT conjugates may thus be employed as a facile strategy for designing antibacterial and anti-biofilm coatings to prevent the infections associated with medical devices. Methods: Conjugation of the cationic dye malachite green to carbon nanotube was studied by UV-visible spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectrometry. P. aeruginosa and S. aureus photodestruction were studied using MGCNT conjugate irradiated for 3 mins with a red laser of wavelength 660 nm and radiant exposure of 58.49 J cm-2. Results: Upon MGCNT treatment, S. aureus and P. aeruginosa were reduced by 5.16 and 5.55 log10 , respectively. Compared to free dye, treatment with MGCNT afforded improved phototoxicity against test bacteria, concomitant with greater ROS production. The results revealed improved biofilm inhibition, exopolysaccharide inhibition, and reduced cell viability in test bacteria treated with MGCNT conjugate. P. aeruginosa and S. aureus biofilms were considerably reduced to 60.20±2.48% and 67.59±3.53%, respectively. Enhanced relative MGCNT phototoxicity in test bacteria was confirmed using confocal laser scanning microscopy. Conclusion: The findings indicated that MGCNT conjugate could be useful to eliminate the biofilms formed on medical devices by S. aureus and P. aeruginosa.