Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118614, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454449

RESUMEN

In recent periods, a broad assortment of continual organic contaminants has been released into our natural water resources. Indeed, it is exceedingly poisonous and perilous to living things; thus, the elimination of these organic pollutants before release into the water bodies is vital. A variety of techniques have been utilized to remove these organic pollutants with advanced oxidation photocatalytic methods with zinc oxide (ZnO) nanoparticles being commonly used as a capable catalyst for contaminated water treatment. Nevertheless, its broad energy gap, which can be only stimulated under an ultraviolet (UV) light source, and high recombination pairs of electrons and holes limit their photocatalytic behaviors. However, numerous methods have been suggested to decrease its energy gap for visible regions. Including, the doping ZnO with metal ions (dopant) can be considered as an effectual route not only the reason for a movement of the absorption edges toward the higher (visible light) region but also to lower the electron-hole pair (e--h+) recombination. This review concentrated on the impact of dissimilar types of metal ions (dopants) on the advancement in the degradation performance of ZnO. So, this work demonstrates a vital review of contemporary attainments in the alteration of ZnO nanoparticles for organic pollutants eliminations. Besides, the effect of doping ions including transition metals, rare earth metals, and metal ions (substitutional and interstitial) concerning numerous types of altered ZnO are summarized. The photodegradation mechanisms for pristine and metal-modified ZnO nanoparticles are also conferred.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Óxido de Zinc , Zinc , Metales , Compuestos Orgánicos , Colorantes , Preparaciones Farmacéuticas , Iones , Catálisis
2.
Environ Res ; 209: 112836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35104483

RESUMEN

Biosorption is a versatile technique of removing the oil spill - one of the major toxicants that causes water pollution, which threatens the ecological balance of the aquatic ecosystem. The proposed research aims in developing a viable adsorbent from discarded agricultural waste, Phoenix sylvestris, which was surface altered, assessed and utilised as a biosorbent for the effective removal of diesel from aqueous solution in batch adsorption trials. Waste palm leaves, Phoenix sylvestris (RPS)was physically (PMPS) and chemically modified (CMPS) to adsorb diesel in the emulsion. The synthesised materials were characterised by FTIR, SEM, and EDS, confirming a well-defined microporous structure consisting of ionisable groups. The studies indicated optimised conditions of 10 g, 4.5 g and 2 g of RPS, PMPS and CMPS respectively at 303K for an optimised adsorption time of 60 min. Freundlich isotherm agreed well with experimental data, and the kinetic mechanism claimed better results with RPS, PMPS and CMPS for Pseudo first-order model. The adsorbents could be reused five times without much loss of efficiency. From the performed studies, it can be inferred that good adsorption capacities at optimised conditions followed the order of CMPS > PMPS > RPS. Thermodynamic analysis proved the feasibility of such biosorption with exothermic nature predicting spontaneous attraction of oil components to the surface of PMPS and CMPS. Moreover, the density of the CMPS layer rendered proven results for such biosorption displaying a hyperbolic dependency assuring its efficacy. Hence, it can be concluded that the prepared adsorbent from Phoenix sylvestris, an agricultural waste, possess good adsorptive properties.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA