Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(33)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38744265

RESUMEN

Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.

2.
ACS Appl Mater Interfaces ; 16(36): 47973-47987, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225263

RESUMEN

Owing to the correlation between acetone in human's exhaled breath (EB) and blood glucose, the development of EB acetone gas-sensing devices is important for early diagnosis of diabetes diseases. In this article, a noninvasive blood glucose detection device through acetone sensing in EB, based on an α-Fe2O3-multiwalled carbon nanotube (MWCNT) nanocomposite, was successfully developed. Different amounts of α-Fe2O3 were added to the MWCNTs by a simple solution method. The optimized acetone gas sensor showed a response of 5.15 to 10 ppm acetone gas at 200 °C. Also, the fabricated sensor showed very good sensing properties even in an atmosphere with high relative humidity. Since the EB has high humidity, the proposed sensor is a promising device to exactly detect the amount of acetone in EB with high humidity. The sensor was powered by a 3200 mAh battery with the possibility of charging using mains electricity. To increase the reliability and calibration of the sensing device, a practical test was taken to detect acetone EB from 50 volunteers, and a deep learning algorithm (DLA) was used to detect the effect of various factors on the amount of acetone in each person's acetone EB. The proposed device with ±15 errors had almost 85% correct responses. Also, the proposed device had excellent response, short response time, good selectivity, and good repeatability, leading it to be a suitable candidate for noninvasive blood glucose sensing.


Asunto(s)
Acetona , Glucemia , Pruebas Respiratorias , Aprendizaje Profundo , Nanocompuestos , Nanotubos de Carbono , Acetona/análisis , Nanotubos de Carbono/química , Humanos , Nanocompuestos/química , Glucemia/análisis , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Compuestos Férricos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Espiración
3.
Sci Rep ; 13(1): 7136, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130889

RESUMEN

In this paper, we have developed an in-vehicle wireless driver breath alcohol detection (IDBAD) system based on Sn-doped CuO nanostructures. When the proposed system detects the ethanol trace in the driver`s exhaled breath, it can alarm and then prevents the car to be started and also sends the location of the car to the mobile phone. The sensor used in this system is a two-sided micro-heater integrated resistive ethanol gas sensor fabricated based on Sn-doped CuO nanostructures. Pristine and Sn-doped CuO nanostructures were synthesized as the sensing materials. The micro-heater is calibrated to provide the desired temperature by applying voltage. The results showed that by Sn-doping in CuO nanostructures, the sensor performance can be significantly improved. The proposed gas sensor has a fast response, good repeatability along with good selectivity that makes it suitable for being used in practical applications such as the proposed system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA