Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Sci ; 127(Pt 14): 3184-96, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24838945

RESUMEN

When mitophagy is induced in Saccharomyces cerevisiae, the mitochondrial outer membrane protein ScAtg32 interacts with the cytosolic adaptor protein ScAtg11. ScAtg11 then delivers the mitochondria to the pre-autophagosomal structure for autophagic degradation. Despite the importance of ScAtg32 for mitophagy, the expression and functional regulation of ScAtg32 are poorly understood. In this study, we identified and characterized the ScAtg32 homolog in Pichia pastoris (PpAtg32). Interestingly, we found that PpAtg32 was barely expressed before induction of mitophagy and was rapidly expressed after induction of mitophagy by starvation. Additionally, PpAtg32 was phosphorylated when mitophagy was induced. We found that PpAtg32 expression was suppressed by Tor and the downstream PpSin3-PpRpd3 complex. Inhibition of Tor by rapamycin induced PpAtg32 expression, but could neither phosphorylate PpAtg32 nor induce mitophagy. Based on these findings, we conclude that the Tor and PpSin3-PpRpd3 pathway regulates PpAtg32 expression, but not PpAtg32 phosphorylation.


Asunto(s)
Autofagia/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Proteínas Relacionadas con la Autofagia , Unión Proteica , Saccharomyces cerevisiae/citología , Proteínas de Transporte Vesicular/metabolismo
2.
Rinsho Byori ; 64(3): 265-9, 2016 Mar.
Artículo en Japonés | MEDLINE | ID: mdl-27363218

RESUMEN

Squamous cell carcinoma antigen (SCCA) is a glycoprotein that belongs to the serine protease inhibitor family. Clinically, it has been utilized as a tumor marker for squamous cell carcinoma. In clinical laboratories, SCCA is measured by several immunoassays. Recently, a number of studies have been reported that there is a significant difference in values between the immunoassays, attributing to SCCA-immunoglobulin complex. We found a case with significant difference in the SCCA value between CLIA and FEIA. In this case, SCCA-Immunoglobulin complex was not confirmed by gel filtration analysis. Interestingly, 5 to 10 kDa slightly-high molecular weight SCCA compared to control was detected by immunoblotting assay. It may be suspected that the aberrant glycosyl modification of SCCA influenced the reactivity to immunoassays.


Asunto(s)
Antígenos de Neoplasias/análisis , Serpinas/análisis , Neoplasias Uterinas/química , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Cromatografía en Gel , Femenino , Fluoroinmunoensayo , Glicosilación , Humanos , Peso Molecular
3.
EMBO Rep ; 14(9): 788-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897086

RESUMEN

Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitofagia , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , Quinasa de la Caseína II/genética , Mitocondrias/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Biol Chem ; 287(5): 3265-72, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22157017

RESUMEN

In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , ADN de Hongos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Nucleic Acids Res ; 38(16): 5554-68, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20430825

RESUMEN

ERAL1, a homologue of Era protein in Escherichia coli, is a member of conserved GTP-binding proteins with RNA-binding activity. Depletion of prokaryotic Era inhibits cell division without affecting chromosome segregation. Previously, we isolated ERAL1 protein as one of proteins which were associated with mitochondrial transcription factor A by using immunoprecipitation. In this study, we analysed the localization and function of ERAL1 in mammalian cells. ERAL1 was localized in mitochondrial matrix and associated with mitoribosomal proteins including the 12S rRNA. siRNA knockdown of ERAL1 decreased mitochondrial translation, caused redistribution of ribosomal small subunits and reduced 12S rRNA. The knockdown of ERAL1 in human HeLa cells elevated mitochondrial superoxide production and slightly decreased mitochondrial membrane potential. The knockdown inhibited the growth of HeLa cells with an accumulation of apoptotic cells. These results suggest that ERAL1 is localized in a small subunit of the mitochondrial ribosome, plays an important role in the small ribosomal constitution, and is also involved in cell viability.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Unión al ARN/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Apoptosis , Proliferación Celular , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Unión al GTP/análisis , Proteínas de Unión al GTP/antagonistas & inhibidores , Células HeLa , Humanos , Inmunoprecipitación , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/antagonistas & inhibidores , Biosíntesis de Proteínas , ARN/aislamiento & purificación , ARN Mitocondrial , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/antagonistas & inhibidores , Especies Reactivas de Oxígeno
6.
Genes Cells ; 14(8): 1029-42, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19624753

RESUMEN

Mitochondrial RNA polymerase (POLRMT) is a core protein for mitochondrial DNA (mtDNA) transcription. In addition, POLRMT is assumed to be involved in replication, although its exact role is not yet clearly elucidated. We have found novel properties of human POLRMT using a reconstituted transcription system. Various lengths of RNA molecules were synthesized from templates even without a defined promoter sequence, when we used supercoiled circular double-stranded DNA as a template. This promoter-independent activity was as strong as the promoter-dependent one. Promoter-independent DNA conformation-dependent transcription required TFB2M. On supercoiled templates, the promoter-independent activity was strongly suppressed by a putatively physiological amount of TFAM, while promoter-dependent transcription was inhibited to a lesser extent. These different inhibition patterns by TFAM may be important for prevention of random RNA synthesis in vivo. Promoter-independent activity was also observed on relaxed circular single-stranded DNA, where its activity no longer required TFB2M. RNA synthesis on single-stranded DNA was weakly suppressed by a putatively physiological amount of TFAM but restored by the addition of mitochondrial single-stranded DNA binding protein. We suggest that these properties of POLRMT could explain the characteristic features of mammalian mtDNA transcription and replication.


Asunto(s)
ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mitocondrias/enzimología , Conformación de Ácido Nucleico , Replicación del ADN , ADN Mitocondrial/genética , ADN Superhelicoidal , Proteínas de Unión al ADN , Humanos , Metiltransferasas , Proteínas Mitocondriales , Regiones Promotoras Genéticas , Factores de Transcripción , Transcripción Genética
7.
Clin Chim Acta ; 487: 337-340, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30317021

RESUMEN

BACKGROUND: It is known that an immunoglobulin abnormality affects various clinical laboratory measurements and leads to abnormal values. We experienced a case of monoclonal gammopathy of undetermined significance (MGUS) showing a falsely low plasma glycated albumin (GA) level. CASE REPORT: The patient was a 75-y-old male who visited our hospital for thrombocytosis identified during a medical checkup. Based on further examinations, he was diagnosed with MGUS (IgM-κ type). Laboratory examinations revealed that the plasma GA level was significantly low at -1.3% but the serum GA level was reasonable at 15.5%. We investigated the cause of the falsely low plasma GA level. RESULTS: The patient's plasma became turbid after mixing with the first reagent for GA measurement. The plasma GA level was increased by dilution of the plasma. The plasma GA level was falsely decreased only at the time of measurement on a sample collected using a blood-collecting tube with heparin sodium. The GA level was decreased by adding heparin sodium to the patient's serum, whereas the GA level was increased by neutralization of the patient's plasma with protamine sulfate. The GA level was increased after adding polyethylene glycol to the patient's plasma. Serum GA levels in healthy controls were decreased by adding purified M protein from the patient's serum. CONCLUSIONS: We report a patient with MGUS whose plasma GA concentration was falsely decreased by M protein when blood was drawn in a heparin sodium-containing tube.


Asunto(s)
Inmunoglobulina M/sangre , Gammopatía Monoclonal de Relevancia Indeterminada/sangre , Albúmina Sérica/análisis , Anciano , Productos Finales de Glicación Avanzada , Humanos , Inmunoglobulina M/inmunología , Masculino , Gammopatía Monoclonal de Relevancia Indeterminada/inmunología , Albúmina Sérica/inmunología , Albúmina Sérica Glicada
8.
J Biochem ; 141(2): 201-11, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17167045

RESUMEN

Mitochondrial transcription factor A (TFAM) contains a basic C-terminal tail which is essential for the promoter-specific transcription. TFAM is also a major component of a protein-mitochondrial DNA (mtDNA) complex, called nucleoid, as a non-specific DNA-binding protein. However, little is known about a role of the C-tail in the nucleoid. Overexpression of full-length TFAM decreased the amount of a D-loop form of mtDNA in cells, while overexpression of TFAM lacking its C-tail (TFAM-DeltaC) did not, suggesting that the C-tail is involved in destabilization or formation of the D-loop. An mRNA for mtDNA-derived ND1 was hardly decreased in the former but rather decreased in the latter. Given that the D-loop formation is coupled with the transcription, the decrease in the D-loop is likely due to its destabilization. The recombinant full-length TFAM much strongly unwound DNA than TFAM-DeltaC, which is consistent with the above idea because D-loop is resolved by unwinding of the supercoiling state. Notably, truncation of the C-tail decreased DNA-binding activity of TFAM by three orders of magnitude. Thus, the C-terminal tail of TFAM is important for the strong general binding to mtDNA. This strong DNA-binding conferred by the C-tail may play an important role in the nucleoid structure.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , ADN Mitocondrial/química , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Factores de Transcripción/química , Transcripción Genética
10.
Mol Biol Cell ; 22(17): 3206-17, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21757540

RESUMEN

Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.


Asunto(s)
Autofagia , Mitocondrias/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Serina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Medios de Cultivo , Eliminación de Gen , Técnicas de Inactivación de Genes , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/química
11.
J Biochem ; 138(6): 673-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16428295

RESUMEN

Human mitochondrial DNA takes on a large protein-DNA complex called a nucleoid or mitochromosome. Mitochondrial transcription factor A (TFAM) is a major component of the complex. During an attempt to search for proteins associated with the TFAM-containing complex by a proteomic method, we found one protein that has not been considered to be mitochondrial: PDIP38. PDIP38 was initially identified as a binding protein to nuclear DNA polymerase delta. PDIP38 is almost exclusively recovered from the mitochondrial fraction of human HeLa cells. PDIP38 is completely cleaved when TritonX-100-solubilized mitochondria are treated with proteinase K, but not when mitoplasts devoid of outer membranes are treated, indicating that PDIP38 is located in the mitochondrial matrix. TFAM and mitochondrial single-stranded DNA binding protein (mtSSB) are co-immunoprecipitated with PDIP38 by anti-PDIP38 antibodies. On the other hand, only the latter is crosslinked to PDIP38 when mitochondria are treated with a crosslinker, formaldehyde. In addition to mtSSB, 60 kDa heat shock protein and a Lon protease homolog, both of which have single-stranded DNA binding activity, are also crosslinked. PDIP38 associates with the nucleoid components and could be involved in the metabolism of mitochondrial DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN Mitocondrial , ADN de Cadena Simple/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/fisiología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA