Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 441(1): 255-64, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21919885

RESUMEN

Intracellular pH conditions many cellular systems, but its mechanisms of regulation and perception are mostly unknown. We have identified two yeast genes important for tolerance to intracellular acidification caused by weak permeable acids. One corresponded to LEU2 and functions by removing the dependency of the leu2 mutant host strain on uptake of extracellular leucine. Leucine transport is inhibited by intracellular acidification, and either leucine oversupplementation or overexpression of the transporter gene BAP2 improved acid growth. Another acid-tolerance gene is GCN2, encoding a protein kinase activated by uncharged tRNAs during amino acid starvation. Gcn2 phosphorylates eIF2α (eukaryotic initiation factor 2α) (Sui2) at Ser51 and this inhibits general translation, but activates that of Gcn4, a transcription factor for amino acid biosynthetic genes. Intracellular acidification activates Gcn2 probably by inhibition of aminoacyl-tRNA synthetases because we observed accumulation of uncharged tRNAleu without leucine depletion. Gcn2 is required for leucine transport and a gcn2-null mutant is sensitive to acid stress if auxotrophic for leucine. Gcn4 is required for neither leucine transport nor acid tolerance, but a S51A sui2 mutant is acid-sensitive. This suggests that Gcn2, by phosphorylating eIF2α, may activate translation of an unknown regulator of amino acid transporters different from Gcn4.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico/fisiología , Ácido Acético , Adaptación Fisiológica , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Homeostasis , Concentración de Iones de Hidrógeno , Leucina/metabolismo , Mutación , Plásmidos , Proteínas Serina-Treonina Quinasas/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Angew Chem Int Ed Engl ; 51(42): 10556-60, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22996839

RESUMEN

Learning to let go with age: Intracellular controlled release of molecules within senescent cells was achieved using mesoporous silica nanoparticles (MSNs) capped with a galacto-oligosaccharide (GOS) to contain the cargo molecules (magenta spheres; see scheme). The GOS is a substrate of the senescent biomarker, senescence-associated ß-galactosidase (SA-ß-gal), and releases the cargo upon entry into SA-ß-gal expressing cells.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular Tumoral , Senescencia Celular , Sistemas de Liberación de Medicamentos/instrumentación , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Humanos , Porosidad , Rodaminas/administración & dosificación , Rodaminas/química , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo
3.
PLoS One ; 6(11): e27409, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22087310

RESUMEN

Virus life cycle heavily depends on their ability to command the host machinery in order to translate their genomes. Animal viruses have been shown to interfere with host translation machinery by expressing viral proteins that either maintain or inhibit eIF2α function by phosphorylation. However, this interference mechanism has not been described for any plant virus yet. Prunnus necrotic ringspot virus (PNRSV) is a serious pathogen of cultivated stone fruit trees. The movement protein (MP) of PNRSV is necessary for the cell-to-cell movement of the virus. By using a yeast-based approach we have found that over-expression of the PNRSV MP caused a severe growth defect in yeast cells. cDNA microarrays analysis carried out to characterise at the molecular level the growth interference phenotype reported the induction of genes related to amino acid deprivation suggesting that expression of MP activates the GCN pathway in yeast cells. Accordingly, PNRSV MP triggered activation of the Gcn2p kinase, as judged by increased eIF2α phosphorylation. Activation of Gcn2p by MP expression required a functional Tor1p kinase, since rapamycin treatment alleviated the yeast cell growth defect and blocked eIF2α phosphorylation triggered by MP expression. Overall, these findings uncover a previously uncharacterised function for PNRSV MP viral protein, and point out at Tor1p and Gcn2p kinases as candidate susceptibility factors for plant viral infections.


Asunto(s)
Proteínas de Movimiento Viral en Plantas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Activación Transcripcional , Saccharomyces cerevisiae/enzimología , Virosis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA