Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 149(5): 1048-59, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632969

RESUMEN

Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.


Asunto(s)
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Endopeptidasa K/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Modelos Moleculares , Neuronas/metabolismo , Estrés Oxidativo , Ratas
2.
EMBO J ; 40(21): e107568, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617299

RESUMEN

While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas del Tejido Nervioso/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Agregado de Proteínas , Análisis por Matrices de Proteínas , Unión Proteica , Transducción de Señal , Electricidad Estática , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Mol Cell ; 65(6): 1096-1108.e6, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306505

RESUMEN

Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer's and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Enfermedades Neurodegenerativas/enzimología , Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , ARN Polimerasa III/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/enzimología , Citosol/enzimología , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Polimerasa III/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Factores de Transcripción/genética , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518228

RESUMEN

Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.


Asunto(s)
Amiloide/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , alfa-Sinucleína/metabolismo , Entropía , Humanos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas/fisiología , Proteostasis/fisiología
5.
J Am Chem Soc ; 145(33): 18276-18285, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556728

RESUMEN

An increasing number of cases where amyloids of different proteins are found in the same patient are being reported. This observation complicates diagnosis and clinical intervention. Amyloids of the amyloid-ß peptide or the protein α-synuclein are traditionally considered hallmarks of Alzheimer's and Parkinson's diseases, respectively. However, the co-occurrence of amyloids of these proteins has also been reported in patients diagnosed with either disease. Here, we show that soluble species containing amyloid-ß can induce the aggregation of α-synuclein. Fibrils formed under these conditions are solely composed of α-synuclein to which amyloid-ß can be found associated but not as part of the core of the fibrils. Importantly, by global kinetic analysis, we found that the aggregation of α-synuclein under these conditions occurs via heterogeneous primary nucleation, triggered by soluble aggregates containing amyloid-ß.


Asunto(s)
Péptidos beta-Amiloides , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Cinética , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos , Amiloide/metabolismo
6.
Bioconjug Chem ; 34(10): 1802-1810, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37751398

RESUMEN

Bioconjugates of antibodies and their derivatives radiolabeled with ß+-emitting radionuclides can be utilized for diagnostic PET imaging. Site-specific attachment of radioactive cargo to antibody delivery vectors provides homogeneous, well-defined immunoconjugates. Recent studies have demonstrated the utility of oxaziridine chemistry for site-specific labeling of methionine residues. Herein, we applied this approach to site-specifically radiolabel trastuzumab-derived Fab immunoconjugates with 68Ga, which can be used for in vivo PET imaging of HER2-positive breast cancer tumors. Initially, a reactive azide was introduced to a single solvent-accessible methionine residue in both the wild-type Fab and an engineered derivative containing methionine residue M74, utilizing the principles of oxaziridine chemistry. Subsequently, these conjugates were functionalized with a modified DFO chelator incorporating dibenzocyclooctyne. The resulting DFO-WT and DFO-M74 conjugates were radiolabeled with generator-produced [68Ga]Ga3+, to yield the novel PET radiotracers, [68Ga]Ga-DFO-WT and [68Ga]Ga-DFO-M74. In vitro and in vivo studies demonstrated that [68Ga]Ga-DFO-M74 exhibited a higher affinity for HER2 receptors. Biodistribution studies in mice bearing orthotopic HER2-positive breast tumors revealed a higher uptake of [68Ga]Ga-DFO-M74 in the tumor tissue, accompanied by rapid renal clearance, enabling clear delineation of tumors using PET imaging. Conversely, [68Ga]Ga-DFO-WT exhibited lower uptake and inferior image contrast compared to [68Ga]Ga-DFO-M74. Overall, the results demonstrate that the highly facile methionine-oxaziridine modification approach can be simply applied to the synthesis of stable and site-specifically modified radiolabeled antibody-chelator conjugates with favorable pharmacokinetics for PET imaging.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Ratones , Trastuzumab/química , Radioisótopos de Galio , Metionina , Distribución Tisular , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Quelantes/química , Racemetionina , Inmunoconjugados/química , Circonio/química , Línea Celular Tumoral
7.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202527

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Asunto(s)
Galectina 3 , Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Galectina 3/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo
8.
Bioessays ; 43(11): e2100178, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674273

RESUMEN

Protein misfolding is a topic that is of primary interest both in biology and medicine because of its impact on fundamental processes and disease. In this review, we revisit the concept of protein misfolding and discuss how the field has evolved from the study of globular folded proteins to focusing mainly on intrinsically unstructured and often disordered regions. We argue that this shift of paradigm reflects the more recent realisation that misfolding may not only be an adverse event, as originally considered, but also may fulfil a basic biological need to compartmentalise the cell with transient reversible granules. We nevertheless provide examples in which structure is an important component of a much more complex aggregation behaviour that involves both structured and unstructured regions of a protein. We thus suggest that a more comprehensive evaluation of the mechanisms that lead to aggregation might be necessary.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Pliegue de Proteína
9.
Proc Natl Acad Sci U S A ; 117(24): 13509-13518, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32493749

RESUMEN

Protein misfolding and aggregation is the hallmark of numerous human disorders, including Alzheimer's disease. This process involves the formation of transient and heterogeneous soluble oligomers, some of which are highly cytotoxic. A major challenge for the development of effective diagnostic and therapeutic tools is thus the detection and quantification of these elusive oligomers. Here, to address this problem, we develop a two-step rational design method for the discovery of oligomer-specific antibodies. The first step consists of an "antigen scanning" phase in which an initial panel of antibodies is designed to bind different epitopes covering the entire sequence of a target protein. This procedure enables the determination through in vitro assays of the regions exposed in the oligomers but not in the fibrillar deposits. The second step involves an "epitope mining" phase, in which a second panel of antibodies is designed to specifically target the regions identified during the scanning step. We illustrate this method in the case of the amyloid ß (Aß) peptide, whose oligomers are associated with Alzheimer's disease. Our results show that this approach enables the accurate detection and quantification of Aß oligomers in vitro, and in Caenorhabditis elegans and mouse hippocampal tissues.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Anticuerpos/inmunología , Agregado de Proteínas , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Especificidad de Anticuerpos , Caenorhabditis elegans , Modelos Animales de Enfermedad , Epítopos , Hipocampo/metabolismo , Ratones , Unión Proteica , Conformación Proteica , Anticuerpos de Dominio Único
10.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686116

RESUMEN

Amyloid aggregates are diverse proteinaceous assemblies, including one or more protein species, wherein the molecules interact according to characteristic patterns [...].


Asunto(s)
Proteínas Amiloidogénicas
11.
Proc Natl Acad Sci U S A ; 114(6): E1009-E1017, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096355

RESUMEN

The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.


Asunto(s)
Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , alfa-Sinucleína/química , Algoritmos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Productos Biológicos/química , Productos Biológicos/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Colestanoles/química , Colestanoles/farmacología , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Paresia/genética , Paresia/metabolismo , Paresia/prevención & control , Enfermedad de Parkinson/metabolismo , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630615

RESUMEN

Alzheimer's disease is associated with the aggregation of the amyloid-ß peptide (Aß), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aß aggregates induce neuronal dysfunction has highlighted the importance of the Aß oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aß oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aß (Aß40) as models of brain Aß oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aß40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aß40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aß oligomers.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Anticuerpos/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Formación de Anticuerpos/inmunología , Encéfalo/metabolismo , Diseño de Fármacos , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Agregado de Proteínas/fisiología , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
13.
Proc Natl Acad Sci U S A ; 113(26): 7171-6, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27286828

RESUMEN

The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution.


Asunto(s)
Duplicado del Terminal Largo de VIH/fisiología , ARN Viral/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie
14.
Chem Soc Rev ; 47(24): 9137-9157, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30298157

RESUMEN

Owing to their outstanding performances in molecular recognition, antibodies are extensively used in research and applications in molecular biology, biotechnology and medicine. Recent advances in experimental and computational methods are making it possible to complement well-established in vivo (first generation) and in vitro (second generation) methods of antibody discovery with novel in silico (third generation) approaches. Here we describe the principles of computational antibody design and review the state of the art in this field. We then present Modular, a method that implements the rational design of antibodies in a modular manner, and describe the opportunities offered by this approach.


Asunto(s)
Anticuerpos/química , Descubrimiento de Drogas/métodos , Secuencia de Aminoácidos , Animales , Simulación por Computador , Diseño Asistido por Computadora , Humanos , Aprendizaje Automático , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
15.
Biochemistry ; 57(26): 3641-3649, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29763298

RESUMEN

Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Difusión , Diseño de Equipo , Humanos , Cinética , Dispositivos Laboratorio en un Chip , Dominios Proteicos , Multimerización de Proteína , Termodinámica
16.
Cell Mol Life Sci ; 74(17): 3225-3243, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28631009

RESUMEN

It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Dicroismo Circular , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Dispersión del Ángulo Pequeño , Bibliotecas de Moléculas Pequeñas/química , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos
17.
Proc Natl Acad Sci U S A ; 112(32): 9902-7, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216991

RESUMEN

Antibodies are powerful tools in life sciences research, as well as in diagnostic and therapeutic applications, because of their ability to bind given molecules with high affinity and specificity. Using current methods, however, it is laborious and sometimes difficult to generate antibodies to target specific epitopes within a protein, in particular if these epitopes are not effective antigens. Here we present a method to rationally design antibodies to enable them to bind virtually any chosen disordered epitope in a protein. The procedure consists in the sequence-based design of one or more complementary peptides targeting a selected disordered epitope and the subsequent grafting of such peptides on an antibody scaffold. We illustrate the method by designing six single-domain antibodies to bind different epitopes within three disease-related intrinsically disordered proteins and peptides (α-synuclein, Aß42, and IAPP). Our results show that all these designed antibodies bind their targets with good affinity and specificity. As an example of an application, we show that one of these antibodies inhibits the aggregation of α-synuclein at substoichiometric concentrations and that binding occurs at the selected epitope. Taken together, these results indicate that the design strategy that we propose makes it possible to obtain antibodies targeting given epitopes in disordered proteins or protein regions.


Asunto(s)
Anticuerpos/química , Epítopos/inmunología , Proteínas Intrínsecamente Desordenadas/química , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Especificidad de Anticuerpos/inmunología , Western Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Fluorescencia , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Datos de Secuencia Molecular , Proteínas Mutantes/química , Péptidos/química , Agregado de Proteínas , Unión Proteica , Estructura Secundaria de Proteína , Anticuerpos de Dominio Único , alfa-Sinucleína/química
18.
Proc Natl Acad Sci U S A ; 112(16): E1994-2003, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25855634

RESUMEN

We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of ß-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their ß-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the ß-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species.


Asunto(s)
Amiloide/química , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Imagenología Tridimensional , Modelos Moleculares , Peso Molecular , Estructura Secundaria de Proteína , alfa-Sinucleína/ultraestructura
19.
Biochemistry ; 56(9): 1177-1180, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28230968

RESUMEN

The Hsp70 family of chaperones plays an essential role in suppressing protein aggregation in the cell. Here we investigate the factors controlling the intrinsic ability of human Hsp70 to inhibit the elongation of amyloid fibrils formed by the Parkinson's disease-related protein α-synuclein. Using kinetic analysis, we show that Hsp70 binds preferentially to α-synuclein fibrils as a consequence of variations in the association and dissociation rate constants of binding to the different aggregated states of the protein. Our findings illustrate the importance of the kinetics of binding of molecular chaperones, and also of potential therapeutic molecules, in the efficient suppression of specific pathogenic events linked to neurodegeneration.


Asunto(s)
Unión Competitiva , Proteínas HSP70 de Choque Térmico/metabolismo , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Cinética , Estructura Secundaria de Proteína , Especificidad por Sustrato
20.
Anal Chem ; 88(7): 3488-93, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26940224

RESUMEN

The viscosity of complex solutions is a physical property of central relevance for a large number of applications in material, biological, and biotechnological sciences. Here we demonstrate a microfluidic technology to measure the viscosity of solutions by following the advection and diffusion of tracer particles under steady-state flow. We validate our method with standard water-glycerol mixtures, and then we apply this microfluidic diffusion viscometer to measure the viscosity of protein solutions at high concentrations as well as of a crude cell lysate. Our approach exhibits a series of attractive features, including analysis time on the order of seconds and the consumption of a few µL of sample, as well as the possibility to readily integrate the microfluidic viscometer in other instrument platforms or modular microfluidic devices. These characteristics make microfluidic diffusion viscometry an attractive approach in automated processes in biotechnology and health-care sciences where fast measurements with limited amount of sample consumption are required.


Asunto(s)
Difusión , Glicerol/química , Técnicas Analíticas Microfluídicas , Agua/química , Soluciones , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA