Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Opt Express ; 32(3): 4485-4497, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297649

RESUMEN

Fluorescent (FL) encrypting nanostructures, such as quantum dots, carbon dots, organic dyes, lanthanide nanocrystals, DNA, and more, are effective tools for advanced applications in high-resolution hidden imaging. These applications include tracking, labeling, security printing, and anti-counterfeiting drug technology. In this work, what we believe to be a new FL encoding nanostructures has been proposed, which consists of recently discovered nanometer-scale peptide dots. When refolded into a beta-sheet peptide secondary structure, these biocompatible nanoparticles exhibit a strong and tunable FL effect. The biophotonic FL covers the entire visible spectrum, making the peptide dots next-generation nanoscale light sources with a quantum yield of 30%. Our studies demonstrate that these FL bio-nanodots also exhibit a significant irreversible photo-bleaching effect associated with the light-induced destruction of noncovalent intermolecular hydrogen bonds of the peptide dots' highly stable beta-sheet secondary structure. We present what we believe is a new approach for achieving high-resolution long-term optical memory by tailoring various hidden images in the developed thin polyvinyl alcohol (PVA) polymer films with an embedded dense array of FL peptide nanodots. The technology enables recording photo-bleached patterns, barcodes, and high-resolution images.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Polímeros , Nanopartículas/química , Puntos Cuánticos/química , Péptidos , Colorantes , Colorantes Fluorescentes/química
2.
J Pept Sci ; 25(5): e3164, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900328

RESUMEN

Basic optical properties of bioinspired peptide nanostructures are deeply modified by thermally mediated refolding of peptide secondary structure from α-helical to ß-sheet. This conformational transition is followed by the appearance in the ß-sheet structures of a wideband optical absorption and fluorescence in the visible region. We demonstrate that a new biophotonic effect of optical waveguiding recently observed in peptide/protein nanoensembles is a structure-sensitive bimodal phenomenon. In the primary α-helical structure input, light propagates via optical transmission window demonstrating conventional passive waveguiding, based on classical optics. In the ß-sheet structure, fluorescent (active) light waveguiding is revealed. The latter can be attributed to completely different physical mechanism of exciton-polariton propagation, characterized by high effective refractive index, and can be observed in nanoscale fibers below diffraction limit. It has been shown that peptide material requirements for passive and active waveguiding are dissimilar. Original biocompatibility and biodegradability indicate high potential future applications of these bioinspired waveguiding materials in precise photobiomedicine towards advanced highly selective bioimaging, photon diagnostics, and optogenetics.


Asunto(s)
Luz , Nanoestructuras/química , Péptidos/química , Fluorescencia , Imagen Óptica , Tamaño de la Partícula , Propiedades de Superficie
3.
Small ; 14(34): e1801147, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30027685

RESUMEN

Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical properties and developed nanotechnology of large peptide wafers makes them highly promising for new biomedical light therapy tools and implantable optical biochips. This Review highlights a new field of peptide nanophotonics. It covers peptide nanotechnology and the fabrication process of peptide integrated optical circuits, basic studies of linear and nonlinear optical phenomena in biological and bioinspired nanostructures, and their passive and active optical waveguiding. It is shown that the optical properties of this generation of bio-optical materials are governed by fundamental biological processes. Refolding the peptide secondary structure is followed by wideband optical absorption and visible tunable fluorescence. In peptide optical waveguides, such a bio-optical effect leads to switching from passive waveguiding mode in native α-helical phase to an active one in the ß-sheet phase. The found active waveguiding effect in ß-sheet fiber structures below optical diffraction limit opens an avenue for the future development of new bionanophotonics in ultrathin peptide/protein fibrillar structures toward advanced biomedical nanotechnology.


Asunto(s)
Análisis por Micromatrices , Nanoestructuras/química , Fenómenos Ópticos , Péptidos/química , Medicina de Precisión , Nanotecnología
4.
J Pept Sci ; 23(2): 95-103, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27966267

RESUMEN

Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Nanotecnología/métodos , Nanotubos de Péptidos/química , Pinzas Ópticas , Óptica y Fotónica/métodos , Fenilalanina/análogos & derivados , Dipéptidos , Diseño de Equipo , Humanos , Luz , Nanotecnología/instrumentación , Nanotubos de Péptidos/ultraestructura , Fibras Ópticas , Óptica y Fotónica/instrumentación , Fenilalanina/química , Refractometría
5.
Opt Express ; 21(4): 4126-38, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23481946

RESUMEN

Localized surface plasmons-polaritons represent collective behavior of free electrons confined to metal particles. This effect may be used for enhancing efficiency of solar cells and for other opto-electronic applications. Plasmon resonance strongly affects optical properties of ultra-thin, island-like, metal films. In the present work, the Finite Difference Time Domain (FDTD) method is used to model transmittance spectra of thin gold island films grown on a glass substrate. The FDTD calculations were performed for island structure, corresponding to the Volmer-Weber model of thin film growth. The proposed simulation model is based on fitting of experimental data on nanostructure of ultra-thin gold films, reported in several independent studies, to the FDTD simulation setup. The results of FDTD modeling are then compared to the experimentally measured transmittance spectra of prepared thin gold films and found to be in a good agreement with experimental data.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Modelos Químicos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Dispersión de Radiación
6.
Nano Lett ; 12(5): 2228-32, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22463365

RESUMEN

We have studied the influence of both exciton effects and Coulomb repulsion on current in molecular nanojunctions. We show that dipolar energy-transfer interactions between the sites in the wire can at high voltage compensate Coulomb blocking for particular relationships between their values. Tuning this relationship may be achieved by using the effect of plasmonic nanostructure on dipolar energy-transfer interactions.

7.
J Nanosci Nanotechnol ; 12(3): 2668-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755106

RESUMEN

The evanescent light photon extraction efficiency of insulator, semiconductor and conductor amorphous nanolayers deposited on glass waveguides was evaluated from Differential Evanescent Light Intensity measurements. The Differential Evanescent Light Intensity technique uses the evanescent field scattered by the deposited nanolayer, enabling nanometer thickness profiling due to the high inherent dark background contrast. The results show that the effective evanescent photon penetration depth increases from metal to semiconductor and then to insulating layers, establishing thus the effective photon-material interaction length for the various materials classes.

8.
Appl Opt ; 50(28): 5457-64, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22016213

RESUMEN

A simple, approximate theoretical model of surface plasmon resonance in two-dimensional metal nanoshells is developed. The model is based on the concept of short-range surface plasmons propagating around closed circular metal nanotubes. In this model, the plasmon resonance in a metal nanotube is treated as a propagating, self-interfering plasmonic wave, in a ring-type resonance, at plasmonic wavelengths matching an integer fraction of the nanotube's effective circumference. The model is validated by detailed computer simulations based on the finite-difference time-domain method and is shown to be in full agreement with the widely used plasmon hybridization model, which is based on the quasi-static approximation.

9.
Sci Rep ; 11(1): 17609, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475484

RESUMEN

Bioinspired fluorescence, being widely explored for imaging purposes, faces challenges in delivering bright biocompatible sources. While quite a few techniques have been developed to reach this goal, encapsulation of high-quantum yield fluorescent dyes in natural biological forms suggest achieving superior light-emitting characteristics, approaching amplified spontaneous emission and even lasing. Here we compare gain capabilities of highly concentrated Rhodamine B solutions with a newly synthesized biocompatible peptide derivative hybrid polymer/peptide material, RhoB-PEG1300-F6, which contains the fluorescent covalently bound dye. While concentration quenching effects limit the maximal achievable gain of dissolved Rhodamine B, biocompatible conjugation allows elevating amplification coefficients towards moderately high values. In particular, Rhodamine B, anchored to the peptide derivative material, demonstrates gain of 22-23 cm-1 for a 10-2 M solution, while a pure dye solution possesses 25% smaller values at the same concentration. New biocompatible fluorescent agents pave ways to demonstrate lasing in living organisms and can be further introduced to therapeutic applications, if proper solvents are found.

10.
Opt Lett ; 35(8): 1139-41, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20410945

RESUMEN

Computer simulation studies of absorption enhancement in a silicon (Si) substrate by nanoshell-related localized surface plasmon resonance (LSPR) based on a finite-difference time-domain analysis are presented. The results of these studies show significant enhancement of over 15x in the near-bandgap spectral region of Si, using 40 nm diameter, two-dimensional silver (Ag) nanoshells, simulating cylindrical nanoshell structure. The studies also indicate a clear advantage of the cylindrical nanoshell structure over that of a completely filled Ag-nanocylinders. The enhancement was studied as a function of the metallic shell thickness. The results suggest that the main enhancement mechanism in this case of tubular nanoshells embedded in the Si substrate is that of field-enhanced absorption caused by the strong LSPR-enhanced electric field, extending into the silicon substrate.

11.
Appl Opt ; 47(33): 6315-24, 2008 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19023399

RESUMEN

A one-dimensional, ultrasmall pixel liquid-crystal (LC) device is experimentally demonstrated. The device has a one-dimensional array of ten 1 mm long, interdigitated, reflective gold electrodes on a glass substrate and a common transparent electrode on the opposite substrate. The interdigitated electrodes are 2 microm wide, separated by a 1 microm interelectrode gap. Operating as a dynamic, reflective, 3 microm pitch diffractive grating, the device simulates the performance of a reflective, ultrasmall, 3 microm pixel, spatial light modulator (SLM). It was shown that, for a proper choice of LC cell thickness (less than 2 microm), LC material (Merck's BL006 high-birefringence mixture), and driving conditions, the device can attain relatively high diffraction efficiency, thus demonstrating the practical feasibility of a 3 microm pixel, LC SLM.

12.
Adv Mater ; 30(5)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29226468

RESUMEN

Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to ß-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring.


Asunto(s)
Péptidos/química , Nanotecnología , Óptica y Fotónica , Fotones , Estructura Secundaria de Proteína
13.
Acta Biomater ; 30: 72-77, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26546415

RESUMEN

Unique linear and nonlinear optical properties of bioinspired peptide nanostructures such as wideband transparency and high second-order nonlinear optical response, combined with elongated tubular shape of variable size and rapid self-assembly fabrication process, make them promising for diverse bio-nano-photonic applications. This new generation of nanomaterials of biological origin possess physical properties similar to those of biological structures. Here, we focus on new specific functionality of ultrashort peptide nanotubes to guide light at fundamental and second-harmonic generation (SHG) frequency in horizontal and vertical peptide nanotubes configurations. Conducted simulations and experimental data show that these self-assembled linear and nonlinear optical bio-waveguides provide strong optical power confinement factor, demonstrate pronounced directionality of SHG and high conversion efficiency of SHG ∼10(-5). Our study gives new insight on physics of light propagation in nanostructures of biological origin and opens the avenue towards new and unexpected applications of these waveguiding effects in bio-nanomaterials both for biomedical nonlinear microscopy imaging recognition and development of novel integrated nanophotonic devices.


Asunto(s)
Luz , Nanotubos/química , Nanotubos/ultraestructura , Péptidos/química
14.
Appl Opt ; 44(15): 2989-95, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15929288

RESUMEN

The fringing-field broadening of a phase-step profile and its dependence on the thickness of a liquid-crystal (LC) cell were studied in a simple, three-electrode LC cell structure consisting of two lateral electrodes biased with a differential voltage and a third, grounded, electrode placed on the opposite substrate. The results were compared both with an approximate analytical model developed earlier for a fringe-field-broadening kernel and with computer simulations. Good agreement between the experiment and the theoretical as well as the simulation results is shown.

15.
Appl Opt ; 43(1): 11-9, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14714638

RESUMEN

A detailed simulation of the fringing-field effect in liquid-crystal (LC)-based blazed-grating structures has been carried out. These studies are aimed at clarifying the relationship between the width of the fringing-field-broadened phase profile of the blazed grating and the LC cell thickness. This fringing-field broadening of the blazed grating's phase profile is shown to affect mostly the 2pi phase-step zone (fly-back zone) of the blazed grating. The results of the simulations carried out on the blazed-grating structure indicate two main effects of the fringing field: (1) reduction in the attainable diffraction efficiency and (2) limitation of the maximum deflection angle of the device. Both effects are shown to be directly linked to the broadening of the fly-back zone, which is shown to be proportional to the LC cell thickness.

16.
J Opt Soc Am A Opt Image Sci Vis ; 21(10): 1996-2008, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15497428

RESUMEN

An approximate analytical model was developed that links the fringing-field broadening of the phase profile of a liquid-crystal (LC) beam-steering device, and the resulting diffraction efficiency, to the physical parameters of the device including the cell thickness as well as the dielectric, optical, and geometrical constants of the device. The analysis includes a full solution of the Laplace equation for the LC device in which the broadening of the initial voltage profile into an effective voltage-drop profile, due to the fringing-field effect, is derived. It is shown that within the linear approximation used, the broadening of the phase profile is identical to the broadening of the effective voltage profile in the presence of the fringing field. On the basis of this model, the resulting broadening kernel of the phase profile is found to be proportional to the LC cell thickness. These results are found to be in an excellent agreement with high-precision computer simulations performed on the LC beam-steering structure, thereby validating this approximate linear model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA