Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 215(Pt 1): 114294, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113573

RESUMEN

The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Amoníaco , Electrocoagulación/métodos , Humanos , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
2.
Sci Total Environ ; 816: 151522, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752862

RESUMEN

The newly prepared reduced graphene oxide-MnO2 (rGO-MnO2) nanocomposite has exhibited highly selective CO2 adsorption from gaseous mixtures at elevated temperatures. The Mn2+ basic sites are scattered over the rGO-MnO2 nanocomposite which produce an effective BET surface area of 710 m2 g-1 for selective CO2 capture. The selective adsorption of CO2 (5.87 mmol g-1) over N2 (0.36 mmol g-1) and CH4 (0.41 mmol g-1) at 298 K/1 bar was achieved by the nanocomposite. The heat of adsorption followed a unique correlation with the quantity of CO2 adsorbed and fits well to the Fowler-Guggenheim equation. The mechanism of CO2 adsorption on the nanocomposite was complemented with molecular modelling and simulations. The rGO-MnO2 have shown better CO2 adsorption capacity of 28.5 mmol g-1 at 323 K/20 bar as compared to zeolite derivatives, MOFs, and carbons as reported in the literature. The formation of inert frameworks with 3-6 nm porous structure in the nanocomposite thermally stabilizes to capture CO2 repeatedly. The nanocomposite with adsorption capacity of 3.69 mmol g-1 at 373 K/1 bar is quite close to real-life conditions for flue gas treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA