RESUMEN
Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.
Asunto(s)
Antiinfecciosos/farmacología , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Animales , Diferenciación Celular/genética , Células Cultivadas , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Citocinas/genética , Citocinas/metabolismo , Disbiosis/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Microbiota/fisiología , Monocitos/metabolismo , Monocitos/microbiologíaRESUMEN
OBJECTIVE: Dysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine. DESIGN: We performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples. RESULTS: We characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1ß and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease. CONCLUSION: Our work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn's disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1ß-targeting therapies upstream of IL-23.
Asunto(s)
Resistencia a Medicamentos/genética , Enfermedades Inflamatorias del Intestino/genética , Interleucina-10/genética , Subunidad p19 de la Interleucina-23/biosíntesis , Subunidad p19 de la Interleucina-23/genética , Monocitos/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Comunicación Autocrina , Células Cultivadas , Femenino , Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Homeostasis/genética , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Comunicación Paracrina , Receptores de Interleucina-10/antagonistas & inhibidores , Receptores de Interleucina-10/metabolismo , Transducción de Señal/genética , Transcriptoma , Factor de Necrosis Tumoral alfa/efectos adversos , Adulto JovenRESUMEN
BACKGROUND: Obesity, a major global health problem, is associated with increased cardiometabolic morbidity and mortality. Protein glycosylation is a frequent posttranslational modification, highly responsive to inflammation and ageing. The prospect of biological age reduction, by changing glycosylation patterns through metabolic intervention, opens many possibilities. We have investigated whether weight loss interventions affect inflammation- and ageing-associated IgG glycosylation changes, in a longitudinal cohort of bariatric surgery patients. To support potential findings, BMI-related glycosylation changes were monitored in a longitudinal twins cohort. METHODS: IgG N-glycans were chromatographically profiled in 37 obese patients, subjected to low-calorie diet, followed by bariatric surgery, across multiple timepoints. Similarly, plasma-derived IgG N-glycan traits were longitudinally monitored in 1680 participants from the TwinsUK cohort. RESULTS: Low-calorie diet induced a marked decrease in the levels of IgG N-glycans with bisecting GlcNAc, whose higher levels are usually associated with ageing and inflammatory conditions. Bariatric surgery resulted in extensive alterations of the IgG N-glycome that accompanied progressive weight loss during 1-year follow-up. We observed a significant increase in digalactosylated and sialylated glycans, and a substantial decrease in agalactosylated and core fucosylated IgG N-glycans (adjusted p value range 7.38 × 10-04-3.94 × 10-02). This IgG N-glycan profile is known to be associated with a younger biological age and reflects an enhanced anti-inflammatory IgG potential. Loss of BMI over a 20 year period in the TwinsUK cohort validated a weight loss-associated agalactosylation decrease (adjusted p value 1.79 × 10-02) and an increase in digalactosylation (adjusted p value 5.85 × 10-06). CONCLUSIONS: Altogether, these findings highlight that weight loss substantially affects IgG N-glycosylation, resulting in reduced glycan and biological age.
Asunto(s)
Inmunoglobulina G , Obesidad , Pérdida de Peso/fisiología , Adulto , Envejecimiento/fisiología , Cirugía Bariátrica , Índice de Masa Corporal , Femenino , Glicosilación , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo , GemelosRESUMEN
Interleukin-23 (IL-23) is an inflammatory cytokine that plays a key role in the pathogenesis of several autoimmune and inflammatory diseases. It orchestrates innate and T cell-mediated inflammatory pathways and can promote T helper 17 (Th17) cell responses. Utilizing a T cell transfer model, we showed that IL-23-dependent colitis did not require IL-17 secretion by T cells. Furthermore, IL-23-independent intestinal inflammation could develop if immunosuppressive pathways were reduced. The frequency of naive T cell-derived Foxp3+ cells in the colon increased in the absence of IL-23, indicating a role for IL-23 in controlling regulatory T cell induction. Foxp3-deficient T cells induced colitis when transferred into recipients lacking IL-23p19, showing that IL-23 was not essential for intestinal inflammation in the absence of Foxp3. Taken together, our data indicate that overriding immunosuppressive pathways is an important function of IL-23 in the intestine and could influence not only Th17 cell activity but also other types of immune responses.
Asunto(s)
Colitis/inmunología , Colitis/metabolismo , Tolerancia Inmunológica , Mediadores de Inflamación/fisiología , Interleucina-23/fisiología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Traslado Adoptivo , Animales , Colitis/genética , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Tolerancia Inmunológica/genética , Mediadores de Inflamación/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-23/deficiencia , Interleucina-23/genética , Linfopenia/genética , Linfopenia/inmunología , Linfopenia/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta/deficiencia , Factor de Crecimiento Transformador beta/genéticaAsunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Anticuerpos Monoclonales Humanizados , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/epidemiología , Infliximab , Pandemias , SARS-CoV-2 , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Protein glycosylation is an enzymatic process known to reflect an individual's physiologic state and changes thereof. The impact of metabolic interventions on plasma protein N-glycosylation has only been sparsely investigated. OBJECTIVE: To examine alterations in plasma protein N-glycosylation following changes in caloric intake and bariatric surgery. SETTING: University of Texas Southwestern Medical Center, US and Oxford University Hospitals, UK. METHODS: This study included 2 independent patient cohorts that recruited 10 and 37 individuals with obesity undergoing a period of caloric restriction followed by bariatric surgery. In both cohorts, clinical data were collated, and the composition of plasma protein N-glycome was analyzed chromatographically. Linear mixed models adjusting for age, sex, and multiple testing (false discovery rate <.05) were used to investigate longitudinal changes in glycosylation features and metabolic clinical markers. RESULTS: A low-calorie diet resulted in a decrease in high-branched trigalactosylated and trisialylated plasma N-glycans and a concomitant increase in low-branched N-glycans in both cohorts. Participants from one cohort additionally underwent a washout period during which caloric intake and body weight increased, resulting in reversal of the initial low-calorie diet-related changes in the plasma N-glycome. Immediate postoperative follow-up revealed the same pattern of N-glycosylation changes in both cohorts-an increase in complex, high-branched, antennary fucosylated, extensively galactosylated and sialylated N-glycans and a substantial decline in simpler, low-branched, core fucosylated, bisected, agalactosylated, and asialylated glycans. A 12-month postoperative monitoring in one cohort showed that N-glycan complexity declines while low branching increases. CONCLUSIONS: Plasma protein N-glycosylation undergoes extensive alterations following caloric restriction and bariatric surgery. These comprehensive changes may reflect the varying inflammatory status of the individual following dietary and surgical interventions and subsequent weight loss.
Asunto(s)
Cirugía Bariátrica , Restricción Calórica , Humanos , Femenino , Glicosilación , Masculino , Adulto , Persona de Mediana Edad , Proteínas Sanguíneas/metabolismo , Obesidad Mórbida/cirugía , Obesidad Mórbida/dietoterapia , Pérdida de Peso/fisiologíaRESUMEN
Foxp3(+) regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3(+) T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-beta can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103(+) mesenteric lymph node dendritic cells (DCs) that induce the development of Foxp3(+) T reg cells. Importantly, promotion of T reg cell responses by CD103(+) DCs is dependent on TGF-beta and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine.
Asunto(s)
Antígenos CD/biosíntesis , Células Dendríticas/metabolismo , Factores de Transcripción Forkhead/fisiología , Cadenas alfa de Integrinas/biosíntesis , Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Separación Celular , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Ratones Transgénicos , Modelos BiológicosRESUMEN
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1ß, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1ß. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Asunto(s)
Asma , Infecciones por Haemophilus , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Haemophilus influenzae , Enfermedad Pulmonar Obstructiva Crónica/patología , Inflamasomas , Infecciones por Haemophilus/microbiología , Citocinas , Inflamación , Células Epiteliales/microbiologíaRESUMEN
Several genes in an interval of human and mouse chromosome 1 are associated with a predisposition for systemic lupus erythematosus. Congenic mouse strains that contain a 129-derived genomic segment, which is embedded in the B6 genome, develop lupus because of epistatic interactions between the 129-derived and B6 genes, e.g. in B6.129chr1b mice. If a gene that is located on chromosome 1 is altered through homologous recombination in 129-derived embryonic stem cells (ES cells) and if the resultant knockout mouse is backcrossed with B6, interpretation of the phenotype of the mutant mouse may be affected by epistatic interactions between the 129 and B6 genomes. Here, we report that knockout mice of two adjacent chromosome 1 genes, Slamf1(-/-) and Slamf2(-/-), which were generated with the same 129-derived ES cell line, develop features of lupus, if backcrossed on to the B6 genetic background. By contrast, Slamf1(-/-) [BALB/c.129] and Slamf2(-/-) [BALB/c.129] do not develop disease. Surprisingly, Slamf1(-/-) [B6.129] mice develop both auto-antibodies and glomerulonephritis between 3 and 6 months of age, while disease fully develops in Slamf1(-/-) [B6.129] mice after 9-14 months. Functional analyses of CD4(+) T cells reveals that Slamf2(-/-) T cells are resistant to tolerance induction in vivo. We conclude that the Slamf2(-/-) mutation may have a unique influence on T-cell tolerance and lupus.
Asunto(s)
Antígenos CD/genética , Antígenos CD/inmunología , Autoanticuerpos/inmunología , Glomerulonefritis/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Animales , Glomerulonefritis/genética , Humanos , Inmunohistoquímica , Endogamia , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones de la Cepa 129 , Ratones Congénicos , Ratones Noqueados , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación LinfocitariaAsunto(s)
Artritis/inmunología , Indazoles/farmacología , Enfermedades Inflamatorias del Intestino/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Células Th17/efectos de los fármacos , Células Th17/inmunología , Artritis/tratamiento farmacológico , Artritis/genética , Artritis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indazoles/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-17/biosíntesis , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/metabolismoRESUMEN
Background: Primary sclerosing cholangitis (PSC) is a disease of the bile duct and liver. However, patients frequently have co-morbidities including inflammatory bowel disease (IBD) and colorectal cancer. Colorectal cancer risk in patients with PSC-associated ulcerative colitis (PSC/UC) is elevated relative to patients with ulcerative colitis (UC) alone, reasons for which remain obscure. Further, clinical and immunological features, and involved intestinal sites differ between PSC/UC and UC. Understanding the molecular and microbial basis for differences in cancer risk between these two patient groups and how these differ across intestinal sites is important for the development of therapies to prevent colorectal cancer development in at-risk individuals. Methods: We employed ribonucleic acid sequencing (RNA-seq) analysis of biopsy samples across three intestinal tissue locations (ileum, caecum and rectum) in patients with PSC/UC (n = 8), UC (n = 10) and healthy controls (n = 12) to determine tissue-dependent transcriptional alterations in PSC/UC. We also performed 16S ribosomal RNA (rRNA) amplicon sequencing to determine bacterial associations with PSC/UC and host-microbiome associations. Results: Tissue-defining transcriptional signatures revealed that the ileum was enriched for genes involved in lipid and drug metabolism, the caecum for activated immune cells and the rectum for enteric neurogenesis. Transcriptional alterations relative to healthy control samples were largely shared between patients with PSC/UC or UC although were distinct across tissue locations. Nevertheless, we observed reduced expression of gamma-glutamyl transferase 1 ( GGT1) specifically in the ileum and caecum of patients with PSC/UC. Analysis of the bacterial component of the microbiome revealed high inter-individual variability of microbiome composition and little evidence for tissue-dependency. We observed a reduction in Parabacteroides relative abundance in the rectum of patients with PSC/UC. Conclusions: The role of gamma-glutamyl transferase in maintaining the redox environment through the glutathione salvage pathway makes our observed alterations a potential pathway to PSC-associated colorectal cancer.
RESUMEN
BACKGROUND: To examine immune-epithelial interactions and their impact on epithelial transformation in primary sclerosing cholangitis-associated ulcerative colitis (PSC-UC) using patient-derived colonic epithelial organoid cultures (EpOCs). METHODS: The EpOCs were originated from colonic biopsies from patients with PSC-UC (n = 12), patients with UC (n = 14), and control patients (n = 10) and stimulated with cytokines previously associated with intestinal inflammation (interferon (IFN) γ and interleukin (IL)-22). Markers of cytokine downstream pathways, stemness, and pluripotency were analyzed by real-time quantitative polymerase chain reaction and immunofluorescence. The OLFM4 expression in situ was assessed by RNAscope and immunohistochemistry. RESULTS: A distinct expression of stem cell-associated genes was observed in EpOCs derived from patients with PSC-UC, with lower expression of the classical stem-cell marker LGR5 and overexpression of OLFM4, previously associated with pluripotency and early stages of neoplastic transformation in the gastrointestinal and biliary tracts. High levels of OLFM4 were also found ex vivo in colonic biopsies from patients with PSC-UC. In addition, IFNγ stimulation resulted in the downregulation of LGR5 in EpOCs, whereas higher expression of OLFM4 was observed after IL-22 stimulation. Interestingly, expression of the IL-22 receptor, IL22RA1, was induced by IFNγ, suggesting that a complex interplay between these cytokines may contribute to carcinogenesis in PSC-UC. CONCLUSIONS: Higher expression of OLFM4, a cancer stemness gene induced by IL-22, is present in PSC-UC, suggesting that IL-22 responses may result in alterations of the intestinal stem-cell niche in these patients.
Asunto(s)
Colangitis Esclerosante , Colitis Ulcerosa , Colon , Factor Estimulante de Colonias de Granulocitos/genética , Mucosa Intestinal , Biomarcadores , Transformación Celular Neoplásica , Colangitis Esclerosante/etiología , Colangitis Esclerosante/genética , Colitis Ulcerosa/complicaciones , Citocinas , Humanos , Interleucinas , Células Madre , Interleucina-22RESUMEN
Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world.
Asunto(s)
Anticuerpos Antivirales/análisis , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Pruebas de Hemaglutinación/métodos , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Pruebas de Aglutinación/métodos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Sistemas de Atención de Punto , Reacción en Cadena de la Polimerasa , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , SeroconversiónRESUMEN
Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.
Asunto(s)
Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Inmunoensayo/métodos , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/epidemiología , Proliferación Celular , Citocinas/metabolismo , Células HEK293 , Personal de Salud , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica , Interferón gamma/metabolismo , Pandemias , Péptidos/metabolismo , SARS-CoV-2/efectos de los fármacosRESUMEN
BACKGROUND AND AIMS: Lymphocyte activation gene [LAG]-3 is an immune checkpoint and its expression identifies recently activated lymphocytes that may contribute to inflammation. We investigated the role of LAG-3 by analysing its expression and function in immune cells from blood and tissue of patients with ulcerative colitis [UC]. METHODS: The phenotypic properties of LAG-3+ T cells were determined by flow cytometry, qRT-PCR and single-cell RNA-sequencing. LAG-3+ cells were quantified and correlated with disease activity. The functional effects of LAG-3+ cells were tested using a depleting anti-LAG-3 monoclonal antibody [mAb] in a mixed lymphocyte reaction [MLR]. RESULTS: LAG-3+ cells in the blood were negligible. LAG-3+ lymphocytes were markedly increased in inflamed mucosal tissue and both frequencies of LAG-3+ T cells and transcript levels of LAG3 correlated with endoscopic severity. LAG-3 expression was predominantly on effector memory T cells, and single-cell RNA-sequencing revealed LAG3 expression in activated and cytokine-producing T cell subsets. Foxp3+CD25hi Tregs also expressed LAG-3, although most mucosal Tregs were LAG-3-. Mucosal LAG-3+ cells produced mainly interferon γ [IFNγ] and interleukin-17A. LAG-3+ cell numbers decreased in patients who responded to biologics, and remained elevated in non-responders. Treatment with a depleting anti-LAG-3 mAb led to a reduction in proliferation and IFNγ production in an MLR. CONCLUSIONS: LAG-3+ cells are increased in the inflamed mucosa, predominantly on effector memory T cells with an activated phenotype and their cell numbers positively correlate with disease activity. Depleting LAG-3 eliminates activated proliferating T cells, and hence LAG-3 could be a therapeutic target in UC.
Asunto(s)
Antígenos CD/inmunología , Colitis Ulcerosa , Mucosa Intestinal , Activación de Linfocitos/inmunología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Desarrollo de Medicamentos , Endoscopía/métodos , Humanos , Proteínas de Punto de Control Inmunitario/inmunología , Inflamación/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Gravedad del Paciente , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.
RESUMEN
MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/patología , Células CACO-2 , Citocinas/inmunología , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/patología , Células THP-1RESUMEN
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Células Asesinas Naturales/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Antígenos CD/inmunología , Femenino , Infecciones por VIH/patología , Humanos , Inmunidad Innata , Cadenas alfa de Integrinas/inmunología , Células Asesinas Naturales/patología , MasculinoRESUMEN
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn's disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of developing colorectal cancer. ILC may play an important amplifying role in IBD and IBD-associated cancer, through secretion of inflammatory cytokines and interaction with other immune and non-immune cells. Here, we will review the evidence indicating a role for ILC in the pathogenesis of chronic intestinal inflammation.
RESUMEN
BACKGROUND AND AIMS: Primary sclerosing cholangitis [PSC] is an idiopathic chronic disorder of the hepatobiliary system associated with inflammatory bowel disease [IBD], mainly ulcerative colitis [UC]. Colitis in patients with PSC and UC [PSC-UC] exhibits characteristic features and is linked to increased colon cancer risk. Genetic studies have identified immune-related susceptibility genes that only partially overlap with those involved in IBD. These observations suggest that PSC-UC may represent a distinct form of IBD. It remains to be elucidated whether different immune mechanisms are involved in colitis in these patients. We aimed to evaluate systemic and intestinal T cell and innate lymphoid cell [ILC] responses, previously associated with IBD, in patients with PSC-UC compared with patients with UC and healthy controls. METHODS: Blood samples and colorectal biopsies were collected from patients with PSC-UC, patients with UC, and healthy controls. T cell and ILC phenotypes were analysed by multicolour flow cytometry. RESULTS: Chemokine receptor [CCR] profiling of circulating T cells showed decreased CCR6-CXCR3+ Th1 cells in PSC-UC, but increased CCR6-CCR4+ Th2 cells only in UC, whereas increased CCR6+CCR4+ Th17 cells were found in both patient groups compared with healthy controls. Increased frequencies of IFN-γ secreting T cells were found in the colon of patients with PSC-UC compared with UC. Interestingly, we observed accumulation of ILC in the colon in PSC-UC. CONCLUSIONS: Our study suggests that PSC-UC represents a different immunological disorder from UC, characterised by increased intestinal Th1 and ILC responses. These results provide further evidence that PSC-UC may represent a distinct form of IBD.