Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(17): e0096722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35943255

RESUMEN

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.


Asunto(s)
COVID-19 , Quinasas Similares a Doblecortina , COVID-19/metabolismo , COVID-19/patología , Calgranulina B/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Quinasas Similares a Doblecortina/antagonistas & inhibidores , Quinasas Similares a Doblecortina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucocitos Mononucleares/metabolismo , Quinolonas/farmacología , SARS-CoV-2 , beta Catenina/metabolismo
2.
Cell Biol Toxicol ; 39(3): 1053-1076, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34626302

RESUMEN

Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKß and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKß- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neuroblastoma , Humanos , Metaloproteinasa 9 de la Matriz/genética , Quinasa I-kappa B/metabolismo , Retroalimentación , Línea Celular Tumoral , FN-kappa B/metabolismo , Neuroblastoma/genética , Proteínas Serina-Treonina Quinasas
3.
Cell Biol Toxicol ; 39(3): 967-989, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34773529

RESUMEN

Cluster of differentiation 73 (CD73), a cell surface enzyme that catalyzes adenosine monophosphate (AMP) breakdown to adenosine, is differentially expressed in cancers and has prognostic significance. We investigated its expression profile in neuroblastoma (NB), its association with NB clinical outcomes, and its influence in the regulation of cancer stem cells' (CSCs) stemness maintenance. RNA-Seq data mining (22 independent study cohorts, total n = 3836) indicated that high CD73 can predict good NB prognosis. CD73 expression (immunohistochemistry) gauged in an NB patient cohort (n = 87) showed a positive correlation with longer overall survival (OS, P = 0.0239) and relapse-free survival (RFS, P = 0.0242). Similarly, high CD73 correlated with longer OS and RFS in advanced disease stages, MYCN non-amplified (MYCN-na), and Stage-4-MYCN-na subsets. Despite no definite association in children < 2 years old (2Y), high CD73 correlated with longer OS (P = 0.0294) and RFS (P = 0.0315) in children > 2Y. Consistently, high CD73 was associated with better OS in MYCN-na, high-risk, and stage-4 subsets of children > 2Y. Multivariate analysis identified CD73 as an independent (P = 0.001) prognostic factor for NB. Silencing CD73 in patient-derived (stage 4, progressive disease) CHLA-171 and CHLA-172 cells revealed cell-line-independent activation of 58 CSC stemness maintenance molecules (QPCR profiling). Overexpressing CD73 in CHLA-20 and CHLA-90 cells with low CD73 and silencing in CHLA-171 and CHLA-172 cells with high CD73 showed that CD73 regulates epithelial to mesenchymal transition (E-Cadherin, N-Cadherin, Vimentin), stemness maintenance (Sox2, Nanog, Oct3/4), self-renewal capacity (Notch), and differentiation inhibition (leukemia inhibitory factor, LIF) proteins (confocal-immunofluorescence). These results demonstrate that high CD73 can predict good prognosis in NB, and further suggest that CD73 regulates stemness maintenance in cells that defy clinical therapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Neuroblastoma , Niño , Humanos , Preescolar , Proteína Proto-Oncogénica N-Myc/genética , Pronóstico , Neuroblastoma/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/uso terapéutico , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/uso terapéutico
4.
Cell Biol Toxicol ; 37(3): 461-478, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32979173

RESUMEN

High-risk neuroblastoma (HR-NB) is branded with hematogenous metastasis, relapses, and dismal long-term survival. Intensification of consolidation therapy with tandem/triple autologous stem cell (SC) rescue (with bone marrow [BM]/peripheral blood [PB] CD34+ selection) after myeloablative chemotherapy has improved long-term survival. However, the benefit is limited by the indication of NB cells in CD34+ PBSCs, CD34 expression in NB cells, and the risk of reinfusing NB cancer stem cells (NB CSCs) that could lead to post-transplant relapse. We investigated the association of CD34 surface expression (92 patients) with NB evolution/clinical outcomes. CD34 gene-level status in NB was assessed through RNA-Seq data mining (18 cohorts, n, 3324). Genetic landscape of CD34-expressing NB CSCs (CD133+CD34+) was compared with CD34- CSCs (CD133+CD34-). RNA-seq data revealed equivocal association patterns of CD34 expression with patient survival. Our immunohistochemistry data revealed definite, but rare (mean, 0.73%; range 0.00-7.87%; median, 0.20%) CD34 positivity in NB. CD34+ significantly associated with MYCN amplification (p, 0.003), advanced disease stage (p, 0.016), and progressive disease (PD, p < 0.0009) after clinical therapy. A general high-is-worse tendency was observed in patients with relapsed disease. High CD34+ correlated with poor survival in patients with N-MYC-amplified HR-NB. Gene expression analysis of CD34+-NB CSCs identified significant up (4631) and downmodulation (4678) of genes compared with NB CSCs that lack CD34. IPA recognized the modulation of crucial signaling elements (EMT, stemness maintenance, differentiation, inflammation, clonal expansion, drug resistance, metastasis) that orchestrate NB disease evolution in CD34+ CSCs compared with CD34- CSCs. While the function of CD34 in NB evolution requires further in-depth investigation, careful consideration should be exercised for autologous stem cell rescue with CD34+ selection in NB patients. Graphical abstract.


Asunto(s)
Antígeno AC133/genética , Antígenos CD34/genética , Antígenos de Superficie/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Preescolar , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Lactante , Masculino , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neuroblastoma/epidemiología , Neuroblastoma/patología , Pediatría , Pronóstico , RNA-Seq
5.
BMC Cancer ; 19(1): 106, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30691436

RESUMEN

BACKGROUND: MYCN amplification directly correlates with the clinical course of neuroblastoma and poor patient survival, and serves as the most critical negative prognostic marker. Although fluorescence in situ hybridization (FISH) remains the gold standard for clinical diagnosis of MYCN status in neuroblastoma, its limitations warrant the identification of rapid, reliable, less technically challenging, and inexpensive alternate approaches. METHODS: In the present study, we examined the concordance of droplet digital PCR (ddPCR, in combination with immunohistochemistry, IHC) with FISH for MYCN detection in a panel of formalin-fixed paraffin-embedded (FFPE) human neuroblastoma samples. RESULTS: In 112 neuroblastoma cases, ddPCR analysis demonstrated a 96-100% concordance with FISH. Consistently, IHC grading revealed 92-100% concordance with FISH. Comparing ddPCR with IHC, we observed a concordance of 95-98%. CONCLUSIONS: The results demonstrate that MYCN amplification status in NB cases can be assessed with ddPCR, and suggest that ddPCR could be a technically less challenging method of detecting MYCN status in FFPE specimens. More importantly, these findings illustrate the concordance between FISH and ddPCR in the detection of MYCN status. Together, the results suggest that rapid, less technically demanding, and inexpensive ddPCR in conjunction with IHC could serve as an alternate approach to detect MYCN status in NB cases, with near-identical sensitivity to that of FISH.


Asunto(s)
Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/diagnóstico , Reacción en Cadena de la Polimerasa , Biomarcadores de Tumor/genética , Formaldehído , Amplificación de Genes , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Neuroblastoma/genética , Neuroblastoma/patología , Adhesión en Parafina , Sensibilidad y Especificidad
6.
Mol Cell Biochem ; 460(1-2): 175-193, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31367889

RESUMEN

The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.


Asunto(s)
Organismos Acuáticos/química , Carcinogénesis/patología , Neoplasias Pancreáticas/patología , Polifenoles/farmacología , Acetatos/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Polifenoles/uso terapéutico , Algas Marinas/química
7.
BMC Genomics ; 16: 501, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148557

RESUMEN

BACKGROUND: MetastamiRs have momentous clinical relevance and have been correlated with disease progression in many tumors. In this study, we identified neuroblastoma metastamiRs exploiting unique mouse models of favorable and high-risk metastatic human neuroblastoma. Further, we related their deregulation to the modulation of target proteins and established their association with clinical outcomes. RESULTS: Whole genome miRNA microarray analysis identified 74 metastamiRs across the manifold of metastatic tumors. RT-qPCR on select miRNAs validated profile expression. Results from bio-informatics across the ingenuity pathway, miRCancer, and literature data-mining endorsed the expression of these miRNAs in multiple tumor systems and showed their role in metastasis, identifying them as metastamiRs. Immunoblotting and TMA-IHC analyses revealed alterations in the expression/phosphorylation of metastamiRs' targets, including ADAMTS-1, AKT1/2/3, ASK1, AURKß, Birc1, Birc2, Bric5, ß-CATENIN, CASP8, CD54, CDK4, CREB, CTGF, CXCR4, CYCLIN-D1, EGFR, ELK1, ESR1, CFOS, FOSB, FRA, GRB10, GSK3ß, IL1α, JUND, kRAS, KRTAP1, MCP1, MEGF10, MMP2, MMP3, MMP9, MMP10, MTA2, MYB, cMYC, NF2, NOS3, P21, pP38, PTPN3, CLEAVED PARP, PKC, SDF-1ß, SEMA3D, SELE, STAT3, TLR3, TNFα, TNFR1, and VEGF in aggressive cells ex vivo and in a manifold of metastatic tumors in vivo. miRNA mimic (hsa-miR-125b, hsa-miR-27b, hsa-miR-93, hsa-miR-20a) and inhibitor (hsa-miR-1224-3p, hsa-miR-1260) approach for select miRNAs revealed the direct influence of the altered metastamiRs in the regulation of identified protein targets. Clinical outcome association analysis with the validated metastamiRs' targets corresponded strongly with poor overall and relapse-free survival. CONCLUSIONS: For the first time, these results identified a comprehensive list of neuroblastoma metastamiRs, related their deregulation to altered expression of protein targets, and established their association with poor clinical outcomes. The identified set of distinctive neuroblastoma metastamiRs could serve as potential candidates for diagnostic markers for the switch from favorable to high-risk metastatic disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Metástasis de la Neoplasia/genética , Neuroblastoma/genética , Animales , Línea Celular Tumoral , Biología Computacional , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Ratones Desnudos , Análisis por Micromatrices/métodos , Recurrencia Local de Neoplasia/genética , Neuroblastoma/patología , Pronóstico
8.
BMC Cancer ; 15: 514, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26159519

RESUMEN

BACKGROUND: Determining the driving factors and molecular flow-through that define the switch from favorable to aggressive high-risk disease is critical to the betterment of neuroblastoma cure. METHODS: In this study, we examined the cytogenetic and tumorigenic physiognomies of distinct population of metastatic site- derived aggressive cells (MSDACs) from high-risk tumors, and showed the influence of acquired genetic rearrangements on poor patient outcomes. RESULTS: Karyotyping in SH-SY5Y and MSDACs revealed trisomy of 1q, with additional non-random chromosomal rearrangements on 1q32, 8p23, 9q34, 15q24, 22q13 (additions), and 7q32 (deletion). Array CGH analysis of individual clones of MSDACs revealed genetic alterations in chromosomes 1, 7, 8, and 22, corresponding to a gain in the copy numbers of LOC100288142, CD1C, CFHR3, FOXP2, MDFIC, RALYL, CSMD3, SAMD12-AS1, and MAL2, and a loss in ADAM5, LOC400927, APOBEC3B, RPL3, MGAT3, SLC25A17, EP300, L3MBTL2, SERHL, POLDIP3, A4GALT, and TTLL1. QPCR analysis and immunoblotting showed a definite association between DNA-copy number changes and matching transcriptional/translational expression in clones of MSDACs. Further, MSDACs exert a stem-like phenotype. Under serum-free conditions, MSDACs demonstrated profound tumorosphere formation ex vivo. Moreover, MSDACs exhibited high tumorigenic capacity in vivo and prompted aggressive metastatic disease. Tissue microarray analysis coupled with automated IHC revealed significant association of RALYL to the tumor grade in a cohort of 25 neuroblastoma patients. Clinical outcome association analysis showed a strong correlation between the expression of CFHR3, CSMD3, MDFIC, FOXP2, RALYL, POLDIP3, SLC25A17, SERHL, MGAT3, TTLL1, or LOC400927 and overall and relapse-free survival in patients with neuroblastoma. CONCLUSION: Together, these data highlight the ongoing acquired genetic rearrangements in undifferentiated tumor-forming neural crest cells, and suggest that these alterations could switch favorable neuroblastoma to high-risk aggressive disease, promoting poor clinical outcomes.


Asunto(s)
Estudios de Asociación Genética , Neuroblastoma/genética , Neuroblastoma/mortalidad , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas , Bandeo Cromosómico , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Xenoinjertos , Humanos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neuroblastoma/patología , Pronóstico , Proteína Ribosomal L3
9.
J Biomed Sci ; 22: 28, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25898131

RESUMEN

BACKGROUND: Identifying the drug-deliverables that target autophagy is crucial to finding a cure for pancreatic cancer (PC), as activated autophagy is associated with poor patient outcomes. Our recent studies recognized the anti-PC potential of an antioxidant-rich collection of seaweed polyphenols and identified potential compounds for the treatment of PC. Accordingly, we investigated whether such compounds could regulate autophagy in therapy-resistant PC cells in vitro and in residual PC in vivo. RESULTS: Human Panc-3.27 and MiaPaCa-2 cells were exposed to fractionated irradiation (FIR) with/without ethyl acetate (EA) polyphenol from Spatoglossum asperum (SA-EA), Padina tetrastromatica (PT-EA), or Hormophysa triquerta (HT-EA). The cells were subjected to QPCR to examine transcriptional alterations in the following autophagy functional regulators: ATG3, ATG5, ATG7, ATG12, LC3A, LC3B, Beclin, Myd88, HMGB1, Rage, and TLRs 1-9. Using a clinically relevant mouse model of residual PC, we use tissue microarray (TMA) and immunohistochemistry (IHC) procedures to investigate the potential of polyphenol(s) to target ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURIVIN after clinical radiotherapy. Radiation significantly increased the transcription of autophagy functional regulators in both cell lines. Seaweed polyphenols completely suppressed the transcription of all investigated autophagy regulators in both cell-lines. Gene silencing approach defined the role of LC3B in radiation-induced cell survival in this setting. TMA-IHC analysis revealed the complete regulation of ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURVIVIN in residual PC following SA-EA, PT-EA, and HT-EA treatment. CONCLUSIONS: These data demonstrate the autophagy blue print in therapy-resistant PC cells for the first time. Moreover, the data strongly suggest that the selected polyphenols could serve as effective adjuvants for current PC treatment modalities and may inhibit tumor relapse by comprehensively targeting therapy-orchestrated autophagy in residual cells.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Autofagia/efectos de los fármacos , Phaeophyceae/química , Algas Marinas/química , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/fisiopatología , Trasplante Heterólogo
10.
Artículo en Inglés | MEDLINE | ID: mdl-38249515

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in children and comprises one-tenth of all childhood cancer deaths. The current clinical therapy for this deadly disease is multimodal, involving an induction phase with alternating regimens of high-dose chemotherapeutic drugs and load reduction surgery; a consolidation phase with more intensive chemotherapy, radiotherapy, and stem cell transplant; and a maintenance phase with immunotherapy and immune-activating cytokine treatment. Despite such intensive treatment, children with neuroblastoma have unacceptable life quality and survival, warranting preventive measures to regulate the cellular functions that orchestrate tumor progression, therapy resistance, metastasis, and tumor relapse/recurrence. Globally, active efforts are underway to identify novel chemopreventive agents, define their mechanism(s) of action, and assess their clinical benefit. Some chemoprevention strategies (e.g., retinoids, difluoromethylornithine) have already been adopted clinically as part of maintenance phase therapy. Several agents are in the pipeline, while many others are in preclinical characterization. Here we review the classes of chemopreventive agents investigated for neuroblastoma, including cellular events targeted, mode(s) of action, and the level of development. Our review: (i) highlights the pressing need for new and improved chemopreventive strategies for progressive neuroblastoma; (ii) lists the emerging classes of chemopreventive agents for neuroblastoma; and (iii) recognizes the relevance of targeting dynamically evolving hallmark functions of tumor evolution (e.g., survival, differentiation, lineage transformation). With recent gains in the understanding of tumor evolution processes and preclinical and clinical efforts, it is our strong opinion that effective chemopreventive strategies for aggressive neuroblastoma are a near reality.

11.
J Biol Chem ; 286(24): 21588-600, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21527635

RESUMEN

Induced radioresistance in the surviving cancer cells after radiotherapy could be associated with clonal selection leading to tumor regrowth at the treatment site. Previously we reported that post-translational modification of IκBα activates NFκB in response to ionizing radiation (IR) and plays a key role in regulating apoptotic signaling. Herein, we investigated the orchestration of NFκB after IR in human neuroblastoma. Both in vitro (SH-SY5Y, SK-N-MC, and IMR-32) and in vivo (xenograft) studies showed that IR persistently induced NFκB DNA binding activity and NFκB-dependent TNFα transactivation and secretion. Approaches including silencing NFκB transcription, blocking post-translational NFκB nuclear import, muting TNF receptor, overexpression, and physiological induction of either NFκB or TNFα precisely demonstrated the initiation and occurrence of NFκB → TNFα → NFκB positive feedback cycle after IR that leads to and sustains NFκB activation. Selective TNF-dependent NFκB regulation was confirmed with futile inhibition of AP-1 and SP-1 in TNF receptor muted cells. Moreover, IR increased both transactivation and translation of Birc1, Birc2, and Birc5 and induced metabolic activity and clonal expansion. This pathway was further defined to show that IR-induced functional p65 transcription (not NFκB1, NFκB2, or c-Rel) is necessary for activation of these survival molecules and associated survival advantage. Together, these results demonstrate for the first time the functional orchestration of NFκB in response to IR and further imply that p65-dependent survival advantage and initiation of clonal expansion may correlate with an unfavorable prognosis of human neuroblastoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , FN-kappa B/metabolismo , Neuroblastoma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Pronóstico , Radiación Ionizante , Factores de Tiempo
12.
Biomark Insights ; 17: 11772719221088404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370397

RESUMEN

Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.

13.
Front Oncol ; 12: 986103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387163

RESUMEN

Women with colorectal cancer (CRC) have survival advantages over men, yet the underlying mechanisms are unclear. T cell infiltration within the CRC tumor microenvironment (TME) correlates strongly with survival. We hypothesized that women with CRC have increased T cell infiltration and differential gene expression in the TME compared to men. Tissue microarrays comprising primary tumor, tumor infiltrated lymph nodes, and uninvolved colon were created from CRC patients. Proportions of CD4 positive (CD4+) and CD8 positive (CD8+) T cells were identified using immunohistochemistry. TME immune- and cancer-related genetic expression from primary and metastatic CRC tumor were also evaluated via the NanoStringIO360 panel and The Cancer Genome Atlas Project database. CD4+ was higher in tumor samples from women compared to men (22.04% vs. 10.26%, p=0.002) and also in lymph node samples (39.54% vs. 8.56%, p=0.001). CD8+ was increased in uninvolved colon from women compared to men (59.40% vs. 43.61%, p=0.015), and in stage I/II tumors compared to III/IV in all patients (37.01% vs. 23.91%, p=0.009). Top CD8+ tertile patients survived longer compared to the bottom (43.9 months vs. 25.3 months, p=0.007). Differential gene expression was observed in pathways related to Treg function, T cell activity, and T cell exhaustion, amongst several others, in women compared to men. Thus, significant sexual dimorphism exists in the TME that could contribute to survival advantages observed in female patients with CRC.

14.
Methods Mol Biol ; 2293: 265-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453724

RESUMEN

Rab GTPases are essentially molecular switches. They serve as master regulators in intracellular membrane trafficking from the formation and transport of vesicles at the originating organelle to its fusion to the membrane at the target organelle. Their functions are diversified and each has their specific subcellular location. Their expression may vary significantly in the same cell when the level of protein production is significantly different in different physiologic status. One of the best examples is the transition from fetal to mature status of cells. Expression and localization of Rab GTPases in mature and developing brains have not been well studied. Immunohistochemistry is an efficient way in the detection, semiquantitation, and localization of Rab GTPases in tissue sections. It is inexpensive and fast which allow efficient mass screening of many sections. In this chapter, we describe the immunohistochemical assay protocol for analyzing several Rab protein expressions of the Rab5 subfamily, including Rab5, Rab17, Rab22, and Rab31, in developmental (fetal) and mature human brains.


Asunto(s)
Encéfalo , Humanos , Inmunohistoquímica , Membranas Intracelulares/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
15.
Expert Opin Ther Targets ; 24(9): 899-914, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33021426

RESUMEN

INTRODUCTION: Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED: Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION: It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Neuroblastoma/tratamiento farmacológico , Animales , Niño , Progresión de la Enfermedad , Desarrollo de Medicamentos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Inmunoterapia/métodos , Lactante , Células Madre Neoplásicas/metabolismo , Neuroblastoma/patología , Tasa de Supervivencia
17.
Cancer Drug Resist ; 2: 948-967, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31867574

RESUMEN

Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease's heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.

18.
Cancer Drug Resist ; 2: 1086-1105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867575

RESUMEN

Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs' influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the "oncomiRs" and "tumor suppressor miRs" in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.

19.
Sci Rep ; 9(1): 11766, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409909

RESUMEN

Most high-risk neuroblastomas that initially respond to therapy will ultimately relapse. Currently, no curative treatment is available. Acquired genetic/molecular rearrangement in therapy-resistant cells contributes to tumor relapse. Recently, we identified significant RD3 loss in progressive disease (PD) and defined its association with advanced disease-stage and poor clinical outcomes. Here, we investigated whether RD3 loss is an acquired process in cells that survive intensive multi-modal clinical therapy (IMCT) and its significance in disease evolution. RD3 status (mRNA, protein) during diagnosis (Dx) and PD after IMCT was investigated in NB patient cohort (n = 106), stage-4 NB cell lines (n = 15) with known treatment status and validated with independent data from another set of 15 cell-lines. Loss of RD3 in metastatic disease was examined using a mouse model of PD and metastatic-site-derived aggressive cells (MSDACs) ex vivo. RD3 silencing/expression assessed changes in metastatic state. Influence of RD3 loss in therapy resistance was examined through independent in vitro and in vivo studies. A significant loss of RD3 mRNA and protein was observed in resistant cells derived from patients with PD after IMCT. This is true to the effect within and between patients. Results from the mouse model identified significant transcriptional/translational loss of RD3 in metastatic tumors and MSDACs. RD3 re-expression in MSDACs and silencing RD3 in parental cells defined the functional relevance of RD3-loss in PD pathogenesis. Analysis of independent studies with salvage therapeutic agents affirmed RD3 loss in surviving resistant cells and residual tumors. The profound reductions in RD3 transcription indicate the de novo regulation of RD3 synthesis in resistant cells after IMCT. Defining RD3 loss in PD and the benefit of targeted reinforcement could improve salvage therapy for progressive neuroblastoma.


Asunto(s)
Proteínas del Ojo/biosíntesis , Neuroblastoma/metabolismo , Animales , Línea Celular Tumoral , Estudios de Cohortes , Terapia Combinada , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteínas del Ojo/genética , Humanos , Ratones , Neuroblastoma/patología , Neuroblastoma/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA