Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533783

RESUMEN

Exposure to repetitive head impacts (RHIs) in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE) which currently can be diagnosed only at postmortem. American football players are at higher risk of developing CTE given their exposure to RHIs. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at postmortem in living individuals using structural magnetic resonance imaging (MRI). MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 58 age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each Traumatic Encephalopathy Syndrome (TES) diagnosis core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula temporal pole and superior frontal gyrus. Post-hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe age-by-group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggest that MRI morphometrics detects abnormalities in individuals with a history of RHI exposure that resemble the anatomic distribution of pathological findings from postmortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggests that brain morphometry must be complemented by other types of measures to characterize individuals with RHIs.

2.
Neuroimage ; 250: 118939, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35104647

RESUMEN

A primary goal of translational neuroscience is to identify the neural mechanisms of age-related cognitive decline and develop protocols to maximally improve cognition. Here, we demonstrate how interventions that apply noninvasive neurostimulation to older adults improve working memory (WM). We found that one session of sham-controlled transcranial direct current stimulation (tDCS) selectively improved WM in older adults with more education, extending earlier work and underscoring the importance of identifying individual predictors of tDCS responsivity. Improvements in WM were associated with two distinct electrophysiological signatures. First, a broad enhancement of theta network synchrony tracked improvements in behavioral accuracy, with tDCS effects moderated by education level. Further analysis revealed that accuracy dynamics reflected an anterior-posterior network distribution regardless of cathode placement. Second, specific enhancements of theta-gamma phase-amplitude coupling (PAC) reflecting tDCS current flow tracked improvements in reaction time (RT). RT dynamics further explained inter-individual variability in WM improvement independent of education. These findings illuminate theta network synchrony and theta-gamma PAC as distinct but complementary mechanisms supporting WM in aging. Both mechanisms are amenable to intervention, the effectiveness of which can be predicted by individual demographic factors.


Asunto(s)
Envejecimiento/fisiología , Mapeo Encefálico/métodos , Cognición/fisiología , Electroencefalografía , Memoria a Corto Plazo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Femenino , Humanos , Masculino
3.
JAMA Netw Open ; 7(8): e2428687, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186275

RESUMEN

Importance: Exposure to repetitive head impacts (RHI) is associated with increased risk for neurodegeneration. Accumulation of toxic proteins due to impaired brain clearance is suspected to play a role. Objective: To investigate whether perivascular space (PVS) volume is associated with lifetime exposure to RHI in individuals at risk for RHI-associated neurodegeneration. Design, Setting, and Participants: This cross-sectional study was part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project, a 7-year multicenter study consisting of 4 US study sites. Data were collected from September 2016 to February 2020 and analyses were performed between May 2021 and October 2023. After controlling for magnetic resonance image (MRI) and processing quality, former American football players and unexposed asymptomatic control participants were included in analyses. Exposure: Prior exposure to RHI while participating in American football was estimated using the 3 cumulative head impact indices (CHII-G, linear acceleration; CHII-R, rotational acceleration; and CHII, number of head impacts). Main Outcomes and Measures: Individual PVS volume was calculated in the white matter of structural MRI. Cognitive impairment was based on neuropsychological assessment. Linear regression models were used to assess associations of PVS volume with neuropsychological assessments in former American football players. All analyses were adjusted for confounders associated with PVS volume. Results: Analyses included 224 participants (median [IQR] age, 57 [51-65] years), with 170 male former football players (114 former professional athletes, 56 former collegiate athletes) and 54 male unexposed control participants. Former football players had larger PVS volume compared with the unexposed group (mean difference, 0.28 [95% CI, 0.00-0.56]; P = .05). Within the football group, PVS volume was associated with higher CHII-R (ß = 2.71 × 10-8 [95% CI, 0.50 × 10-8 to 4.93 × 10-8]; P = .03) and CHII-G (ß = 2.24 × 10-6 [95% CI, 0.35 × 10-6 to 4.13 × 10-6]; P = .03). Larger PVS volume was also associated with worse performance on cognitive functioning in former American football players (ß = -0.74 [95% CI, -1.35 to -0.13]; P = .04). Conclusions and Relevance: These findings suggest that impaired perivascular brain clearance, as indicated by larger PVS volume, may contribute to the association observed between RHI exposure and neurodegeneration.


Asunto(s)
Fútbol Americano , Imagen por Resonancia Magnética , Humanos , Masculino , Estudios Transversales , Fútbol Americano/lesiones , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Estados Unidos , Sistema Glinfático/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Anciano , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/diagnóstico por imagen
4.
Neurol Clin Pract ; 14(5): e200324, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39161749

RESUMEN

Background and Objectives: Exposure to repetitive head impacts (RHI) is linked to the development of chronic traumatic encephalopathy (CTE), which can only be diagnosed at post-mortem. The presence of a cavum septum pellucidum (CSP) is a common finding in post-mortem studies of confirmed CTE and in neuroimaging studies of individuals exposed to RHI. This study examines CSP in living former American football players, investigating its association with RHI exposure, traumatic encephalopathy syndrome (TES) diagnosis, and provisional levels of certainty for CTE pathology. Methods: Data from the DIAGNOSE CTE Research Project were used to compare the presence and ratio of CSP in former American football players (n = 175), consisting of former college (n = 58) and former professional players (n = 117), and asymptomatic unexposed controls without RHI exposure (n = 55). We further evaluated potential associations between CSP measures and cumulative head impact index (CHII) measures (frequency, linear acceleration, and rotational force), a TES diagnosis (yes/no), and a provisional level of certainty for CTE pathology (suggestive, possible, and probable). Results: Former American football players exhibited a higher CSP presence and ratio than unexposed asymptomatic controls. Among player subgroups, professional players showed a greater CSP ratio than former college players and unexposed asymptomatic controls. Among all football players, CHII rotational forces correlated with an increased CSP ratio. No significant associations were found between CSP measures and diagnosis of TES or provisional levels of certainty for CTE pathology. Discussion: This study confirms previous findings, highlighting a greater prevalence of CSP and a greater CSP ratio in former American football players compared with unexposed asymptomatic controls. In addition, former professional players showed a greater CSP ratio than college players. Moreover, the relationship between estimates of CHII rotational forces and CSP measures suggests that cumulative frequency and strength of rotational forces experienced in football are associated with CSP. However, CSP does not directly correlate with TES diagnosis or provisional levels of certainty for CTE, indicating that it may be a consequence of RHI associated with rotational forces. Further research, especially longitudinal studies, is needed for confirmation and to explore changes over time.

5.
Sci Rep ; 11(1): 2789, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531546

RESUMEN

Mild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected.


Asunto(s)
Conmoción Encefálica/complicaciones , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/etiología , Trastornos de la Memoria/etiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Estudiantes , Adulto Joven
6.
Brain Res ; 1720: 146324, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279843

RESUMEN

Working memory (WM) can be improved after repeated training sessions paired with noninvasive neurostimulation techniques. Previously, we reported that WM training paired with tDCS succeeded behaviorally by enhancing anterior-posterior theta phase coherence and reducing alpha power. Here, in two experiments we tested several theta and alpha frequencies and two transcranial alternating current stimulation (tACS) montages in an effort to shortcut WM training while preserving behavioral gains. In Experiment 1, in separate sessions participants received online tACS at two frequencies derived from the previous study with the respective goal of improving and impairing WM performance. We selected the mean group peak value theta (7 Hz) to benefit WM and alpha (11 Hz) to impair WM. Stimulation (tACS) over right frontoparietal sites (F4-P4) during 3-back WM tasks (object, spatial) produced no behavioral consequences. In Experiment 2 we stimulated at a slower theta frequency (4.5 Hz), which was also significant in our prior study, and tested whether frontoparietal or bifrontal montages would be more effective at improving WM. This experiment revealed selectively improved object WM after right frontoparietal tACS alone. In summary, one session of tACS failed to produce the magnitude or breadth of WM gains observed after 4-10 tDCS-WM training sessions. In short, despite looking for loopholes we found little tACS savings.


Asunto(s)
Aprendizaje/fisiología , Memoria a Corto Plazo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Ritmo alfa/fisiología , Cognición , Femenino , Humanos , Masculino , Ritmo Teta/fisiología
7.
Atten Percept Psychophys ; 81(8): 2597-2603, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31218600

RESUMEN

We investigated whether a history of mild traumatic brain injury (mTBI), or concussion, has any effect on visual working memory (WM) performance. In most cases, cognitive performance is thought to return to premorbid levels soon after injury, without further medical intervention. We tested this assumption in undergraduates, among whom a history of mTBI is prevalent. Notably, participants with a history of mTBI performed worse than their colleagues with no such history. Experiment 1 was based on a change detection paradigm in which we manipulated visual WM set size from one to three items, which revealed a significant deficit at set size 3. In Experiment 2 we investigated whether feedback could rescue WM performance in the mTBI group, and found that it failed. In Experiment 3 we manipulated WM maintenance duration (set size 3, 500-1,500 ms) to investigate a maintenance-related deficit. Across all durations, the mTBI group was impaired. In Experiment 4 we tested whether retrieval demands contributed to WM deficits and showed a consistent deficit across recognition and recall probes. In short, even years after an mTBI, undergraduates perform differently on visual WM tasks than their peers with no such history. Given the prevalence of mTBI, these data may benefit other researchers who see high variability in their data. Clearly, further studies will be needed to determine the breadth of the cognitive deficits in those with a history of mTBI and to identify relevant factors that contribute to positive cognitive outcomes.


Asunto(s)
Conmoción Encefálica/psicología , Trastornos de la Memoria/psicología , Memoria a Corto Plazo , Estudiantes/psicología , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Recuerdo Mental , Pruebas Neuropsicológicas , Adulto Joven
8.
Front Aging Neurosci ; 10: 57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593522

RESUMEN

Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compared the effects of two tDCS montages designed on visual working memory (VWM) performance. The bifrontal montage was designed to stimulate the heightened bilateral frontal activity observed in aging adults. The unilateral frontoparietal montage was designed to stimulate activation patterns observed in young adults. Participants completed three sessions (bilateral frontal, right frontoparietal, sham) of anodal tDCS (20 min, 2 mA). During stimulation, participants performed a visual long-term memory (LTM) control task and a visual WM task. There was no effect of tDCS on the LTM task. Participants receiving right unilateral tDCS showed a WM benefit. This pattern was most robust in older adults with low WM capacity. To address the concern that the key difference between the two tDCS montages could be tDCS over the posterior parietal cortex (PPC), we included new analyses from a previous study applying tDCS targeting the PPC paired with a recognition VWM task. No significant main effects were found. A subsequent experiment in young adults found no significant effect of either tDCS montage on either task. These data indicate that tDCS montage, age and WM capacity should be considered when designing tDCS protocols. We interpret these findings as suggestive that protocols designed to restore more youthful patterns of brain activity are superior to those that compensate for age-related changes.

9.
Atten Percept Psychophys ; 77(7): 2270-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26018644

RESUMEN

Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM.


Asunto(s)
Señales (Psicología) , Teoría Gestáltica , Memoria a Corto Plazo/fisiología , Percepción Visual/fisiología , Percepción de Color , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
10.
Neuropsychologia ; 63: 145-53, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25173712

RESUMEN

Visual working memory (VWM) capacity limitations are estimated to be ~4 items. Yet, it remains unclear why certain items from a given memory array may be successfully retrieved from VWM and others are lost. Existing measures of the neural correlates of VWM cannot address this question because they measure the aggregate processing of the entire stimulus array rather than neural signatures of individual items. Moreover, this cumulative processing is usually measured during the delay period, thereby reflecting the allocation of neural resources during VWM maintenance. Here, we use the steady-state visual evoked potential (SSVEP) to identify the neural correlates of individual stimuli at VWM encoding and test two distinct hypotheses: the focused-resource hypothesis and the diffuse-resource hypothesis, for how the allocation of neural resources during VWM encoding may contribute to VWM capacity limitations. First, we found that SSVEP amplitudes were larger for stimuli that were later remembered than for items that were subsequently forgotten. Second, this pattern generalized so that the SSVEP amplitudes were also larger for the unprobed stimuli in correct compared to incorrect trials. These data are consistent with the diffuse-resource view in which attentional resources are broadly allocated across the whole stimulus array. These results illustrate the important role encoding mechanisms play in limiting the capacity of VWM.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Visuales , Memoria a Corto Plazo/fisiología , Recuerdo Mental/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa , Corteza Visual/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA