Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9904, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336960

RESUMEN

High total organic sulfur (TOS) content (i.e., Type IIS kerogen) is well known to significantly influence kerogen transformation but the effect of TOS content on the evolution of organic porosity has only rarely and indirectly been investigated. This study demonstrates that organic porosity is generated at lower thermal maturity in mudstones containing Type IIS kerogen relative to those with Type II kerogen. To our knowledge this phenomenon has not been previously demonstrated. The implications are relevant for the characterization of organic-rich mudstones as cap rocks, hydrocarbon reservoirs, and disposal reservoirs for CO2 or nuclear waste because pore systems control storage volumes and matrix fluid flow. Five thermally immature core samples were selected from three organic-rich mudstone units with low to high TOS content: the late Devonian Duvernay Formation (Canada), middle late Miocene Onnagawa Formation (Japan), and early Jurassic Gordondale member of the Fernie Formation (Canada). Hydrous pyrolysis was used to artificially mature splits of the immature samples to four maturity stages, upon which petrophysical and organic geochemical properties were measured and compared to baseline immature samples. Most porosity growth in Type IIS samples occurred below 0.70% VRoeqv, but in Type II samples was broader and robust until 1.1% VRoeqv.

2.
Sci Rep ; 13(1): 4357, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927775

RESUMEN

Some of the parental material for hydrocarbons produced from low-permeability reservoirs in Western Canada corresponds to thermal products from biodegraded oil. This has been proved by the occurrence of framboidal pyrite, which is often formed during microbial sulfate reduction (MSR). In addition, the identified pyrite framboids are associated with the presence of phosphorus (P). Phosphorus (as phosphate) is a key nutrient and energy carrier for sulfate-reducing bacteria. The pyrite-P assemblage occurs embedded in solid bitumen (thermal residue), which confirms that migrated hydrocarbons provided the environment for microbial growth. Molecular products of severe biodegradation such as 17-nortricyclic terpanes were also detected. Biodegradation effects have been masked not only by thermal degradation of biodegraded oil during maximum burial, but also due to hydrocarbon mixing with late gas-condensate charges. Suitable conditions for biodegradation (< 80 °C, basin uplift) occurred during the Early Cretaceous. The confirmation of paleo-biodegradation means that there was a significant hydrocarbon loss that we have not accounted for. Likewise, MSR and Early Cretaceous seawater sulfate might have played an important role in the generation of the hydrogen sulfide (H2S) detected today.


Asunto(s)
Petróleo , Petróleo/metabolismo , Hidrocarburos/metabolismo , Hierro , Fósforo , Biodegradación Ambiental
3.
Sci Rep ; 12(1): 7931, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562375

RESUMEN

Unconventional petroleum systems go through multiple episodes of internal hydrocarbon migration in response to evolving temperature and pressure conditions during burial and uplift. Migrated fluid signatures can be recognized using stable carbon isotope and PVT compositional data from produced samples representative of in-situ petroleum fluids. Such samples, however, are seldom collected due to operational complexity and high cost. Here, we use carbon isotope and PVT data from co-produced hydrocarbon gas and liquid to provide evidence for widespread migration of gas-condensate in the Montney unconventional petroleum system of western Canada. Extended C1-C33 isotopic profiles exhibit convex upward signatures with C4-C5 maxima at low molecular weight, and increasing or nearly uniform signatures at high molecular weight. Additionally, recombination PVT compositional data show C6-C15 condensate concentrations are higher than expected for unmodified oils. The combined convex upward and increasing or uniform isotopic signatures are interpreted as mixing profiles formed by the introduction of high-maturity gas-condensate (C1-C15) to shallower zones with in-situ hydrocarbon fluids of lower thermal maturity. The recognition of widespread gas-condensate migration adds to the complex history of internal hydrocarbon migration within the Montney tight-petroleum system including previously identified migration episodes of early oil and late-stage methane-rich gas.


Asunto(s)
Petróleo , Isótopos de Carbono/análisis , Monitoreo del Ambiente , Hidrocarburos , Metano/análisis
4.
Environ Earth Sci ; 81(4): 137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222729

RESUMEN

Arsenic (As) is commonly sequestered at the sediment-water interface (SWI) in mining-impacted lakes through adsorption and/or co-precipitation with authigenic iron (Fe)-(oxy)hydroxides or sulfides. The results of this study demonstrate that the accumulation of organic matter (OM) in near-surface sediments also influences the mobility and fate of As in sub-Arctic lakes. Sediment gravity cores, sediment grab samples, and porewaters were collected from three lakes downstream of the former Tundra gold mine, Northwest Territories, Canada. Analysis of sediment using combined micro-X-ray fluorescence/diffraction, K-edge X-ray Absorption Near-Edge Structure (XANES), and organic petrography shows that As is associated with both aquatic (benthic and planktonic alginate) and terrestrially derived OM (e.g., cutinite, funginite). Most As is hosted by fine-grained Fe-(oxy)hydroxides or sulfide minerals (e.g., goethite, orpiment, lepidocrocite, and mackinawite); however, grain-scale synchrotron-based analysis shows that As is also associated with amorphous OM. Mixed As oxidation states in porewater (median = 62% As (V), 18% As (III); n = 20) and sediment (median = 80% As (-I) and (III), 20% As (V); n = 9) indicate the presence of variable redox conditions in the near-surface sediment and suggest that post-depositional remobilization of As has occurred. Detailed characterization of As-bearing OM at and below the SWI suggests that OM plays an important role in stabilizing redox-sensitive authigenic minerals and associated As. Based on these findings, it is expected that increased concentrations of labile OM will drive post-depositional surface enrichment of As in mining-impacted lakes and may increase or decrease As flux from sediments to overlying surface waters. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12665-022-10213-2.

5.
Sci Rep ; 10(1): 7920, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404967

RESUMEN

Core samples from petroleum wells are costly to obtain, hence drill cuttings are commonly used as an alternative source of rock measurements for reservoir, basin modelling, and sedimentology studies. However, serious issues such as contamination from drilling mud, geological representativeness, and physical alteration can cast uncertainty on the results of studies based on cuttings samples. This paper provides a unique comparative study of core and cuttings samples obtained from both vertical and horizontal sections of a petroleum well drilled in the Canadian Montney tight gas siltstone reservoir to investigate the suitability of cuttings for a wide range of geochemical and petrophysical analyses. The results show that, on average, the bulk quantity of kerogen or solid bitumen measured in cuttings is comparable to that of the core samples. However, total organic carbon (TOC) measurements are influenced by oil-based drilling mud (OBM) contamination. Solvent-cleaning of cuttings has been shown to effectively remove OBM contamination in light, medium, and heavy range hydrocarbons and to produce similar kerogen/solid bitumen measurements to that of core samples. Similarly, pyrolysis methods provide an alternative to the solvent-cleaning procedure for analysis of kerogen/solid bitumen in as-received cuttings. Microscopic study substantiates the presence of significant contamination by OBM and caved organic and inorganic matter in the cuttings, which potentially influence the bulk geochemistry of the samples. Furthermore, minerals in the cuttings display induced micro-fractures due to physical impacts of the drilling process. These drilling-induced micro-fractures affect petrophysical properties by artificially enhancing the measured porosity and permeability.

6.
Sci Total Environ ; 709: 136115, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887529

RESUMEN

Sediment cores were collected from two lakes in the Courageous Lake Greenstone Belt (CLGB), central Northwest Territories, Canada, to examine the influence of late-Holocene warming on the transport and fate of arsenic (As) in sub-Arctic lakes. In both lakes, allochthonous As-bearing minerals (i.e. arsenopyrite and scorodite) were identified in sediment deposited during times of both regional warming and cooling, suggesting that weathering of bedrock and derived surficial materials provides a continual source of As to lakes of the CLGB. However, maximum porewater As (84 µg·L-1 and 15 µg·L-1) and reactive organic matter (OM; aquatic and terrestrial-derived) concentrations in each lake are coincident with known periods of regional climate warming. It is inferred that increased biological production in surface waters and influx of terrigenous OM led to the release of sedimentary As to porewater through reductive dissolution of As-bearing Fe-(oxy)hydroxides and scorodite during episodes of regional warming. Elevated sedimentary As concentrations (median: 36 mg·kg-1; range: 29 to 49 mg·kg-1) are observed in sediment coeval with the Holocene Thermal Maximum (ca. 5430 ± 110 to 4070 ± 130 cal. years BP); at these depths, authigenic As-bearing framboidal pyrite is the primary host of As in sediment and the influence of organic matter on the precipitation of As-bearing framboidal pyrite is apparent petrographically. These findings suggest that increased biological productivity and weathering of terrestrial OM associated with climate warming influences redox cycles in the near-surface sediment and enhances the mobility of As in northern lakes. Knowledge generated from this study is relevant for predicting future climate change-driven variations in metal(loid) cycling in aquatic systems and can be used to interpret trends in long-term environmental monitoring data at historical, modern, and future metal mines in northern environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA