Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 52(15): 8947-8966, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39036964

RESUMEN

Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation primarily via base pairing with their target transcripts and modulating translation. Accumulating evidence suggest that sRNAs can also affect the stability of their target transcripts by altering their accessibility to endoribonucleases. Yet, the effects of sRNAs on transcript stability and the mechanisms underlying them have not been studied in wide scale. Here we employ large-scale RNA-seq-based methodologies in the model bacterium Escherichia coli to quantitatively study the functional interaction between a sRNA and an endoribonuclease in regulating gene expression, using the well-established sRNA, GcvB, and the major endoribonuclease, RNase E. Studying single and double mutants of gcvB and rne and analysing their RNA-seq results by the Double Mutant Cycle approach, we infer distinct modes of the interplay between GcvB and RNase E. Transcriptome-wide mapping of RNase E cleavage sites provides further support to the results of the RNA-seq analysis, identifying cleavage sites in targets in which the functional interaction between GcvB and RNase E is evident. Together, our results indicate that the most dominant mode of GcvB-RNase E functional interaction is GcvB enhancement of RNase E cleavage, which varies in its magnitude between different targets.


Asunto(s)
Endorribonucleasas , Proteínas de Escherichia coli , Escherichia coli , ARN Bacteriano , ARN Pequeño no Traducido , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Estabilidad del ARN/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética
2.
Nucleic Acids Res ; 52(15): 9119-9138, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38804271

RESUMEN

Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.


Asunto(s)
Cápsulas Bacterianas , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae , ARN Bacteriano , ARN Pequeño no Traducido , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Virulencia/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecciones por Klebsiella/microbiología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Mol Cell ; 63(5): 884-97, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588604

RESUMEN

Small RNAs (sRNAs) associated with the RNA chaperon protein Hfq are key posttranscriptional regulators of gene expression in bacteria. Deciphering the sRNA-target interactome is an essential step toward understanding the roles of sRNAs in the cellular networks. We developed a broadly applicable methodology termed RIL-seq (RNA interaction by ligation and sequencing), which integrates experimental and computational tools for in vivo transcriptome-wide identification of interactions involving Hfq-associated sRNAs. By applying this methodology to Escherichia coli we discovered an extensive network of interactions involving RNA pairs showing sequence complementarity. We expand the ensemble of targets for known sRNAs, uncover additional Hfq-bound sRNAs encoded in various genomic regions along with their trans encoded targets, and provide insights into binding and possible cycling of RNAs on Hfq. Comparison of the sRNA interactome under various conditions has revealed changes in the sRNA repertoire as well as substantial re-wiring of the network between conditions.


Asunto(s)
Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteína de Factor 1 del Huésped/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Emparejamiento Base , Sitios de Unión , Mapeo Cromosómico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteína de Factor 1 del Huésped/metabolismo , Motivos de Nucleótidos , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(28): 14228-14237, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221751

RESUMEN

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Biosíntesis de Proteínas , Proteínas Quinasas/genética , Esporas Bacterianas/genética , Arginina/genética , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/genética , Ribosomas/genética , Factor sigma/genética , Esporas Bacterianas/crecimiento & desarrollo
5.
Nucleic Acids Res ; 46(19): 10380-10394, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30113670

RESUMEN

Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3' overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Mensajero/genética , Ribonucleasa III/genética , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , División del ARN , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Análisis de Secuencia de ARN , Especificidad por Sustrato , Transcriptoma
6.
J Biol Chem ; 289(12): 8182-93, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24509855

RESUMEN

To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada/análisis , Proteínas de Ciclo Celular , Línea Celular , Histonas/análisis , Histonas/metabolismo , Humanos , Cinetocoros/ultraestructura , Mitosis , Proteínas Nucleares/análisis , Fosforilación , Transactivadores/análisis
8.
Proc Natl Acad Sci U S A ; 109(12): 4621-6, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22393021

RESUMEN

The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA-mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs (fdoG, nuoA, and sodA), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/fisiología , Ligasas/fisiología , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/fisiología , Reactivos de Enlaces Cruzados/farmacología , Cinética , Modelos Biológicos , Polirribosomas/metabolismo , Estructura Terciaria de Proteína , Factores de Tiempo , Rayos Ultravioleta
9.
Nat Commun ; 14(1): 7843, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030608

RESUMEN

In bacteria, determination of the 3' termini of transcripts plays an essential role in regulation of gene expression, affecting the functionality and stability of the transcript. Several experimental approaches were developed to identify the 3' termini of transcripts, however, these were applied only to a limited number of bacteria and growth conditions. Here we present a straightforward approach to identify 3' termini from widely available RNA-seq data without the need for additional experiments. Our approach relies on the observation that the RNAtag-seq sequencing protocol results in overabundance of reads mapped to transcript 3' termini. We present TRS (Termini by Read Starts), a computational pipeline exploiting this property to identify 3' termini in RNAtag-seq data, and show that the identified 3' termini are highly reliable. Since RNAtag-seq data are widely available for many bacteria and growth conditions, our approach paves the way for studying bacterial transcription termination in an unprecedented scope.


Asunto(s)
Bacterias , Transcripción Genética , Bacterias/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Front Microbiol ; 12: 635070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093460

RESUMEN

The genomic revolution and subsequent advances in large-scale genomic and transcriptomic technologies highlighted hidden genomic treasures. Among them stand out non-coding small RNAs (sRNAs), shown to play important roles in post-transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial sRNA-encoding genes were initially identified in intergenic regions, but recent evidence suggest that they can be encoded within other, well-defined, genomic elements. This notion was strongly supported by data generated by RIL-seq, a RNA-seq-based methodology we recently developed for deciphering chaperon-dependent sRNA-target networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the latter, we first tested and refined a set of quantitative features derived from RIL-seq data, which distinguish between Hfq-dependent sRNAs and "other RNAs". We then incorporated these features in a machine learning-based algorithm that predicts novel sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various genomic regions, mostly intergenic regions and 3' untranslated regions, but also 5' untranslated regions and coding sequences. Several candidates were further tested and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces the emerging concept that sRNAs are encoded within various genomic elements, and provides a computational framework for the detection of additional sRNAs in Hfq RIL-seq data of E. coli grown under different conditions and of other bacteria manifesting Hfq-mediated sRNA-target interactions.

11.
Sci Adv ; 7(44): eabi8228, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705501

RESUMEN

Small RNAs (sRNAs) exert their regulation posttranscriptionally by base pairing with their target mRNAs, often in association with the RNA chaperone protein Hfq. Here, integrating RNA-seq­based technologies and bioinformatics, we deciphered the Hfq-mediated sRNA-target interactome of enteropathogenic Escherichia coli (EPEC). The emerging network comprises hundreds of sRNA-mRNA pairs, including mRNAs of virulence-associated genes interacting with known sRNAs encoded within the core genome, as well as with newly found sRNAs encoded within pathogenicity islands. Some of the sRNAs affect multiple virulence genes, suggesting they function as hubs of virulence control. We further analyzed one such sRNA hub, MgrR, and one of its targets identified here, the major virulence-associated chaperon, cesT. We show that MgrR adjusts the level of EPEC cytotoxicity via regulation of CesT expression. Our results reveal an elaborate sRNA-mRNA interactome controlling the pathogenicity of EPEC and reinforce a role for sRNAs in the control of pathogen-host interaction.

12.
Cell Rep ; 30(9): 3127-3138.e6, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130912

RESUMEN

Bacterial small RNAs (sRNAs) are posttranscriptional regulators of gene expression that base pair with complementary sequences on target mRNAs, often in association with the chaperone Hfq. Here, using experimentally identified sRNA-target pairs, along with gene expression measurements, we assess basic principles of regulation by sRNAs. We show that the sRNA sequence dictates the target repertoire, as point mutations in the sRNA shift the target set correspondingly. We distinguish two subsets of targets: targets showing changes in expression levels under overexpression of their sRNA regulator and unaffected targets that interact more sporadically with the sRNA. These differences among targets are associated with their Hfq occupancy, rather than with the sRNA-target base-pairing potential. Our results suggest that competition among targets over Hfq binding plays a major role in the regulatory outcome, possibly awarding targets with higher Hfq binding efficiency an advantage in the competition over binding to the sRNA.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Chaperonas Moleculares/metabolismo , ARN Bacteriano/metabolismo , Secuencia de Bases , Sitios de Unión , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Nat Protoc ; 13(1): 1-33, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29215635

RESUMEN

Small RNAs (sRNAs) are major post-transcriptional regulators of gene expression in bacteria. To enable transcriptome-wide mapping of bacterial sRNA-target pairs, we developed RIL-seq (RNA interaction by ligation and sequencing). RIL-seq is an experimental-computational methodology for capturing sRNA-target interactions in vivo that takes advantage of the mutual binding of the sRNA and target RNA molecules to the RNA chaperone protein Hfq. The experimental part of the protocol involves co-immunoprecipitation of Hfq and bound RNAs, ligation of RNAs, library preparation and sequencing. The computational pipeline maps the sequenced fragments to the genome, reveals chimeric fragments (fragments comprising two ligated independent fragments) and determines statistically significant overrepresented chimeric fragments as interacting RNAs. The statistical filter is aimed at reducing the number of spurious interactions resulting from ligation of random neighboring RNA fragments, thus increasing the reliability of the determined sRNA-target pairs. A major advantage of RIL-seq is that it does not require overexpression of sRNAs; instead, it simultaneously captures the in vivo targets of all sRNAs in the native state of the cell. Application of RIL-seq to bacteria grown under different conditions provides distinctive snapshots of the sRNA interactome and sheds light on the dynamics and rewiring of the post-transcriptional regulatory network. As RIL-seq needs no prior information about the sRNA and target sequences, it can identify novel sRNAs, along with their targets. It can be adapted to detect protein-mediated RNA-RNA interactions in any bacterium with a sequenced genome. The experimental part of the RIL-seq protocol takes 7-9 d and the computational analysis takes ∼2 d.


Asunto(s)
Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Genoma Bacteriano , Genómica
14.
Curr Biol ; 14(24): 2271-6, 2004 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-15620655

RESUMEN

More than 60 small RNAs (sRNA) have been identified in E. coli. The functions of the majority of these sRNAs are still unclear. For the few sRNAs characterized, expression and functional studies indicate that they act under stress conditions. Here, we describe a novel E. coli chromosome locus that is part of the SOS response to DNA damage. This locus encodes two sRNAs, IstR-1 and IstR-2, and a toxic peptide, TisB, encoded by tisAB mRNA. Transcription of tisAB and istR-2 is SOS regulated, whereas IstR-1 is present throughout growth. IstR-1 inhibits toxicity by base-pairing to a short region in the tisAB mRNA. This antisense interaction entails RNase III-dependent cleavage, thereby inactivating the mRNA for translation. In the absence of the SOS response, IstR-1 is present in high excess over its target. However, SOS induction leads to depletion of the IstR-1 pool, concomitant with accumulation of tisAB mRNA. Under such conditions, TisB exerts its toxic effect, slowing down growth. We propose that the inhibitory sRNA prevents inadvertent TisB synthesis during normal growth and, possibly, also limits SOS-induced toxicity. Our study adds the SOS regulon to the growing list of global regulatory circuits controlled by sRNA genes.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Péptidos/metabolismo , ARN Bacteriano/genética , ARN Mensajero/metabolismo , Respuesta SOS en Genética/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Modelos Genéticos , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/toxicidad , ARN Mensajero/genética , Respuesta SOS en Genética/genética
15.
Nat Commun ; 8(1): 2029, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29229900

RESUMEN

The majority of mammalian genes contain one or more alternative polyadenylation sites. Choice of polyadenylation sites was suggested as one of the underlying mechanisms for generating longer/shorter transcript isoforms. Here, we demonstrate that mature mRNA transcripts can undergo additional cleavage and polyadenylation at a proximal internal site in the 3'-UTR, resulting in two stable, autonomous, RNA fragments: a coding sequence with a shorter 3'-UTR (body) and an uncapped 3'-UTR sequence downstream of the cleavage point (tail). Analyses of the human transcriptome has revealed thousands of such cleavage positions, suggesting a widespread post-transcriptional phenomenon producing thousands of stable 3'-UTR RNA tails that exist alongside their transcripts of origin. By analyzing the impact of microRNAs, we observed a significantly stronger effect for microRNA regulation at the body compared to the tail fragments. Our findings open a variety of future research prospects and call for a new perspective on 3'-UTR-dependent gene regulation.


Asunto(s)
Regiones no Traducidas 3'/genética , Isoformas de ARN/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos C57BL , MicroARNs/genética , Sistemas de Lectura Abierta/genética , Poliadenilación , Caperuzas de ARN
16.
PLoS One ; 8(10): e78472, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194938

RESUMEN

Occurrence of DNA damage in a cell activates the DNA damage response, a survival mechanism that ensures genomics stability. Two key members of the DNA damage response are the tumor suppressor p53, which is the most frequently mutated gene in cancers, and MDC1, which is a central adaptor that recruits many proteins to sites of DNA damage. Here we characterize the in vitro interaction between p53 and MDC1 and demonstrate that p53 and MDC1 directly interact. The p53-MDC1 interaction is mediated by the tandem BRCT domain of MDC1 and the C-terminal domain of p53. We further show that both acetylation of lysine 382 and phosphorylation of serine 392 in p53 enhance the interaction between p53 and MDC1. Additionally, we demonstrate that the p53-MDC1 interaction is augmented upon the induction of DNA damage in human cells. Our data suggests a new role for acetylation of lysine 382 and phosphorylation of serine 392 in p53 in the cellular stress response and offers the first evidence for an interaction involving MDC1 that is modulated by acetylation.


Asunto(s)
Daño del ADN/genética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Humanos , Técnicas In Vitro , Lisina/metabolismo , Fosforilación , Conformación Proteica , Serina/metabolismo , Proteína p53 Supresora de Tumor/química
17.
DNA Repair (Amst) ; 10(8): 806-14, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21622030

RESUMEN

The cellular response to DNA damage is essential for maintenance of genomic stability. MDC1 is a key member of the DNA damage response. It is an adaptor protein that binds and recruits proteins to sites of DNA damage, a crucial step for a proper response. MDC1 contains several protein-protein interacting modules, including a tandem BRCT domain that mediates various interactions involving MDC1. Here we demonstrate that MDC1 binds directly to RAP80, which is a DNA damage response protein that recruits BRCA1 to sites of damage. The interaction between MDC1 and RAP80 requires the tandem BRCT domain of MDC1 and the ubiquitin-interacting motifs of RAP80. Moreover, the interaction depends on UBC13, an E2 ubiquitin ligase that catalyzes K63-linked poly-ubiquitin chain formation. The results highly propose that the interaction between MDC1 and RAP80 depends on a ubiquitylation event, which we found to take place on K-1977 of MDC1. This study provides the first evidence that interactions involving MDC1 can be regulated by ubiquitylation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN , Células HEK293 , Chaperonas de Histonas , Humanos , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Eliminación de Secuencia , Transactivadores/química , Ubiquitinación
18.
J Biol Chem ; 284(1): 426-435, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18986980

RESUMEN

The DNA damage response mediators, 53BP1 and MDC1, play a central role in checkpoint activation and DNA repair. Here we establish that human 53BP1 and MDC1 interact directly through the tandem BRCT domain of MDC1 and residues 1288-1409 of 53BP1. Following induction of DNA double strand breaks the interaction is reduced, probably due to competition between gamma-H2AX and 53BP1 for the binding of the tandem BRCT domain of MDC1. Furthermore, the MDC1 binding region of 53BP1 is required for focus formation by 53BP1. During mitosis the interaction between 53BP1 and MDC1 is enhanced. The interaction is augmented in a phospho-dependent manner, and the MDC1 binding region of 53BP1 is phosphorylated in vivo in mitotic cells; therefore, it is probably modulated by cell cycle-regulated kinases. Our results demonstrate that the 53BP1-MDC1 interaction per se is required for the recruitment of 53BP1 to sites of DNA breaks, which is known to be crucial for an efficient activation of the DNA damage response. Moreover, the results presented here suggest that the interaction between 53BP1 and MDC1 plays a role in the regulation of mitosis.


Asunto(s)
Roturas del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Fosforilación/fisiología , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Transactivadores/genética , Proteína 1 de Unión al Supresor Tumoral P53
19.
J Biol Chem ; 282(44): 32053-64, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17827148

RESUMEN

MDC1 (NFBD1), a mediator of the cellular response to DNA damage, plays an important role in checkpoint activation and DNA repair. Here we identified a cross-talk between the DNA damage response and cell cycle regulation. We discovered that MDC1 binds the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that controls the cell cycle. The interaction is direct and is mediated by the tandem BRCA1 C-terminal domains of MDC1 and the C terminus of the Cdc27 (APC3) subunit of the APC/C. It requires the phosphorylation of Cdc27 and is enhanced after induction of DNA damage. We show that the tandem BRCA1 C-terminal domains of MDC1, known to directly bind the phosphorylated form of histone H2AX (gamma-H2AX), also bind the APC/C by the same mechanism, as phosphopeptides that correspond to the C termini of gamma-H2AX and Cdc27 competed with each other for the binding to MDC1. Our results reveal a link between the cellular response to DNA damage and cell cycle regulation, suggesting that MDC1, known to have a role in checkpoint regulation, executes part of this role by binding the APC/C.


Asunto(s)
Ciclo Celular , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Radiación Ionizante , Transactivadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA