Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Genes Dev ; 37(13-14): 621-639, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541760

RESUMEN

Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR subpathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology and results in sequence insertion without additional breaks or SVs. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.


Asunto(s)
Inestabilidad Genómica , Reordenamiento Génico , Recombinación Homóloga , Selección Genética , ADN/genética , ADN/metabolismo , Cromosomas Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(45): 28221-28231, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106418

RESUMEN

Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, providing support for an additional nonindependent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole-genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14- to 150-fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.


Asunto(s)
Genoma Fúngico/genética , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Pérdida de Heterocigocidad/genética , Mutación/genética , Recombinación Genética/genética
3.
Curr Genet ; 67(1): 57-63, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159552

RESUMEN

The rates and patterns by which cells acquire mutations profoundly shape their evolutionary trajectories and phenotypic potential. Conventional models maintain that mutations are acquired independently of one another over many successive generations. Yet, recent evidence suggests that cells can also experience mutagenic processes that drive rapid genome evolution. One such process manifests as punctuated bursts of genomic instability, in which multiple new mutations are acquired simultaneously during transient episodes of genomic instability. This mutational mode is reminiscent of the theory of punctuated equilibrium, proposed by Stephen Jay Gould and Niles Eldredge in 1972 to explain the burst-like appearance of new species in the fossil record. In this review, we survey the dominant and emerging theories of eukaryotic genome evolution with a particular focus on the growing body of work that substantiates the existence and importance of punctuated bursts of genomic instability. In addition, we summarize and discuss two recent studies from our own group, the results of which indicate that punctuated bursts systemic genomic instability (SGI) can rapidly reconfigure the structure of the diploid genome of Saccharomyces cerevisiae.


Asunto(s)
Evolución Biológica , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética
5.
PLoS Genet ; 10(2): e1004119, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586181

RESUMEN

Break-induced replication (BIR) is a mechanism to repair double-strand breaks (DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked to BIR is half-crossovers (HCs), which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here we demonstrate that HC formation results from the interruption of BIR caused by a damaged template, defective replisome or premature onset of mitosis. Additionally, we document that checkpoint failure promotes channeling of BIR into half-crossover-initiated instability cascades (HCC) that resemble cycles of non-reciprocal translocations (NRTs) previously described in human tumors. We postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN/genética , Recombinación Genética , Telómero/genética , Variaciones en el Número de Copia de ADN/genética , Reparación del ADN/genética , Inestabilidad Genómica , Humanos , Neoplasias/etiología , Neoplasias/genética , Saccharomyces cerevisiae , Telómero/patología
6.
PLoS Genet ; 10(12): e1004839, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473964

RESUMEN

G-quadruplex or G4 DNA is a non-B secondary DNA structure that comprises a stacked array of guanine-quartets. Cellular processes such as transcription and replication can be hindered by unresolved DNA secondary structures potentially endangering genome maintenance. As G4-forming sequences are highly frequent throughout eukaryotic genomes, it is important to define what factors contribute to a G4 motif becoming a hotspot of genome instability. Using a genetic assay in Saccharomyces cerevisiae, we previously demonstrated that a potential G4-forming sequence derived from a guanine-run containing immunoglobulin switch Mu (Sµ) region becomes highly unstable when actively transcribed. Here we describe assays designed to survey spontaneous genome rearrangements initiated at the Sµ sequence in the context of large genomic areas. We demonstrate that, in the absence of Top1, a G4 DNA-forming sequence becomes a strong hotspot of gross chromosomal rearrangements and loss of heterozygosity associated with mitotic recombination within the ∼ 20 kb or ∼ 100 kb regions of yeast chromosome V or III, respectively. Transcription confers a critical strand bias since genome rearrangements at the G4-forming Sµ are elevated only when the guanine-runs are located on the non-transcribed strand. The direction of replication and transcription, when in a head-on orientation, further contribute to the elevated genome instability at a potential G4 DNA-forming sequence. The implications of our identification of Top1 as a critical factor in suppression of instability associated with potential G4 DNA-forming sequences are discussed.


Asunto(s)
ADN-Topoisomerasas de Tipo I/fisiología , G-Cuádruplex , Inestabilidad Genómica , Saccharomyces cerevisiae , Transcripción Genética , Eliminación de Gen , Guanina/metabolismo , Región de Cambio de la Inmunoglobulina/genética , Secuencias Invertidas Repetidas , Organismos Modificados Genéticamente , Recombinación Genética , Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo
7.
Microb Cell Fact ; 14: 13, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25633848

RESUMEN

BACKGROUND: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.


Asunto(s)
Bacterias/genética , Etanol/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biomasa , Brasil , Fermentación , Floculación , Ontología de Genes , Genotipo , Microbiología Industrial/métodos , Cinética , Interacciones Microbianas , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo
8.
Genetics ; 227(3)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38722894

RESUMEN

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.


Asunto(s)
Arabidopsis , Daño del ADN , Reparación del ADN , ADN Mitocondrial , Drosophila melanogaster , Saccharomyces cerevisiae , Rayos Ultravioleta , ADN Mitocondrial/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Saccharomyces cerevisiae/metabolismo , Drosophila melanogaster/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Genoma Mitocondrial
9.
PLoS Genet ; 6(9): e1001109, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20838597

RESUMEN

Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.


Asunto(s)
Diploidia , Genoma Fúngico/genética , Meiosis/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Sustitución de Aminoácidos/genética , Cromosomas Fúngicos/genética , Simulación por Computador , ADN de Hongos/genética , Electroforesis en Gel de Campo Pulsado , Homocigoto , Mutación INDEL/genética , Cariotipificación , Mutación/genética , Polimorfismo Genético , Reproducción/genética , Saccharomyces cerevisiae/citología , Análisis de Secuencia de ADN , Esporas Fúngicas/citología , Esporas Fúngicas/genética
10.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986892

RESUMEN

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). In eukaryotic cells, photodamage and other bulky lesions occurring in nuclear genomes (nucDNAs) can be repaired through nucleotide excision repair (NER), where dual incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current views hold that the only way to eliminate bulky DNA damage in mtDNAs is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with anti-damage antibodies and sequenced (XR-seq) to produce high resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in 2-nt (S. cerevisiae) or 4-nt (A. thaliana) intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. We hypothesize that these fragments may reflect the outcome of a previously uncharacterized mechanism of NER-like repair in mitochondria or a programmed mtDNA degradation pathway.

11.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993162

RESUMEN

Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide sequencing approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis, and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR sub-pathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology, and results in sequence insertion without additional break or SV. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.

12.
Genome Res ; 19(12): 2258-70, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812109

RESUMEN

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Genoma Fúngico/genética , Microbiología Industrial , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Brasil , Cromosomas Fúngicos , ADN de Hongos/análisis , Diploidia , Fermentación , Haploidia , Datos de Secuencia Molecular , Fenotipo , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae , Análisis de Secuencia de ADN , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
13.
Genetics ; 220(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791219

RESUMEN

The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a crucial resource for the study of numerous facets of eukaryotic biology. Recent whole genome sequence analysis of over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short-read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation that exists within this species. Single molecule long-read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a wild diploid isolate of S. cerevisiae, YJM311. We used long-read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can be used to define the structural architectures of natural S. cerevisiae isolates. It is our hope that continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural genomic diversity, and evolution.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae , Diploidia , Genómica/métodos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos
14.
Front Genet ; 13: 912851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783258

RESUMEN

How microbial cells leverage their phenotypic potential to survive in a changing environment is a complex biological problem, with important implications for pathogenesis and species evolution. Stochastic phenotype switching, a particularly fascinating adaptive approach observed in numerous species across the tree of life, introduces phenotypic diversity into a population through mechanisms which have remained difficult to define. Here we describe our investigations into the mechanistic basis of colony morphology phenotype switching which occurs in populations of a pathogenic isolate of Saccharomyces cerevisiae, YJM311. We observed that clonal populations of YJM311 cells produce variant colonies that display altered morphologies and, using whole genome sequence analysis, discovered that these variant clones harbored an exceptional collection of karyotypes newly altered by de novo structural genomic variations (SVs). Overall, our analyses indicate that copy number alterations, more often than changes in allelic identity, provide the causative basis of this phenotypic variation. Individual variants carried between 1 and 16 de novo copy number variations, most of which were whole chromosomal aneuploidies. Notably, we found that the inherent stability of the diploid YJM311 genome is comparable to that of domesticated laboratory strains, indicating that the collections of SVs harbored by variant clones did not arise by a chronic chromosomal instability (CIN) mechanism. Rather, our data indicate that these variant clones acquired such complex karyotypic configurations simultaneously, during stochastic and transient episodes of punctuated systemic genomic instability (PSGI). Surprisingly, we found that the majority of these highly altered variant karyotypes were propagated with perfect fidelity in long-term passaging experiments, demonstrating that high aneuploidy burdens can often be conducive with prolonged genomic integrity. Together, our results demonstrate that colony morphology switching in YJM311 is driven by a stochastic process in which genome stability and plasticity are integrally coupled to phenotypic heterogeneity. Consequently, this system simultaneously introduces both phenotypic and genomic variation into a population of cells, which can, in turn perpetuate population diversity for many generations thereafter.

15.
Proc Natl Acad Sci U S A ; 105(33): 11845-50, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18701715

RESUMEN

Ionizing radiation is an established source of chromosome aberrations (CAs). Although double-strand breaks (DSBs) are implicated in radiation-induced and other CAs, the underlying mechanisms are poorly understood. Here, we show that, although the vast majority of randomly induced DSBs in G(2) diploid yeast cells are repaired efficiently through homologous recombination (HR) between sister chromatids or homologous chromosomes, approximately 2% of all DSBs give rise to CAs. Complete molecular analysis of the genome revealed that nearly all of the CAs resulted from HR between nonallelic repetitive elements, primarily Ty retrotransposons. Nonhomologous end-joining (NHEJ) accounted for few, if any, of the CAs. We conclude that only those DSBs that fall at the 3-5% of the genome composed of repetitive DNA elements are efficient at generating rearrangements with dispersed small repeats across the genome, whereas DSBs in unique sequences are confined to recombinational repair between the large regions of homology contained in sister chromatids or homologous chromosomes. Because repeat-associated DSBs can efficiently lead to CAs and reshape the genome, they could be a rich source of evolutionary change.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN/genética , ADN/metabolismo , Genoma Fúngico/genética , Cromosomas Fúngicos/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética
16.
Methods Mol Biol ; 2153: 201-219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840782

RESUMEN

DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.


Asunto(s)
Cromosomas Fúngicos/genética , Biología Computacional/métodos , Recombinación Genética , Saccharomyces cerevisiae/genética , Pérdida de Heterocigocidad , Mitosis , Secuenciación Completa del Genoma , Flujo de Trabajo
17.
Genetics ; 216(1): 43-50, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32753390

RESUMEN

Remarkably complex patterns of aneuploidy have been observed in the genomes of many eukaryotic cell types, ranging from brewing yeasts to tumor cells. Such aberrant karyotypes are generally thought to take shape progressively over many generations, but evidence also suggests that genomes may undergo faster modes of evolution. Here, we used diploid Saccharomyces cerevisiae cells to investigate the dynamics with which aneuploidies arise. We found that cells selected for the loss of a single chromosome often acquired additional unselected aneuploidies concomitantly. The degrees to which these genomes were altered fell along a spectrum, ranging from simple events affecting just a single chromosome, to systemic events involving many. The striking complexity of karyotypes arising from systemic events, combined with the high frequency at which we detected them, demonstrates that cells can rapidly achieve highly altered genomic configurations during temporally restricted episodes of genomic instability.


Asunto(s)
Aneuploidia , Genoma Fúngico , Inestabilidad Genómica , Cromosomas Fúngicos/genética , Evolución Molecular , Cariotipo , Saccharomyces cerevisiae
18.
Sci Total Environ ; 715: 136944, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32014773

RESUMEN

Produced water is the largest waste stream associated with oil and gas operations. This complex fluid contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In the United States, west of the 98th meridian, the federal National Pollutant Discharge Elimination System (NPDES) exemption allows release of produced water for agricultural beneficial reuse. The goal of this study was to quantify mutagenicity of a produced water NPDES release and discharge stream. We used four mutation assays in budding yeast cells that provide rate estimates for copy number variation (CNV) duplications and deletions, as well as forward and reversion point mutations. Higher mutation rates were observed at the discharge and decreased with distance downstream, which correlated with the concentrations of known carcinogens detected in the stream (e.g., benzene, radium), described in a companion study. Mutation rate increases were most prominent for CNV duplications and were higher than mutations observed in mixtures of known toxic compounds. Additionally, the samples were evaluated for acute toxicity in Daphnia magna and developmental toxicity in zebrafish. Acute toxicity was minimal, and no developmental toxicity was observed. This study illustrates that chemical analysis alone (McLaughlin et al., 2020) is insufficient for characterizing the risk of produced water NPDES releases and that a thorough evaluation of chronic toxicity is necessary to fully assess produced water for beneficial reuse.


Asunto(s)
Agua/química , Animales , Variaciones en el Número de Copia de ADN , Daphnia , Gases , Mutágenos , Aceites , Estados Unidos , Contaminantes Químicos del Agua
19.
Front Genet ; 10: 782, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572430

RESUMEN

Abundant genomic heterozygosity can be found in wild strains of the budding yeast Saccharomyces cerevisiae isolated from industrial and clinical environments. The extent to which heterozygosity influences the phenotypes of these isolates is not fully understood. One such case is the PE-2/JAY270 strain, a natural hybrid widely adopted by sugarcane bioethanol distilleries for its ability to thrive under harsh biotic and abiotic stresses during industrial scale fermentation, however, it is not known whether or how the heterozygous configuration of the JAY270 genome contributes to its many desirable traits. In this study, we took a step toward exploring this question by conducting an initial functional characterization of JAY270's heteroalleles. We manipulated the abundance and distribution of heterozygous alleles through inbreeding and targeted uniparental disomy (UPD). Unique combinations of homozygous alleles in each inbred strain revealed wide phenotypic variation for at least two important industrial traits: Heat stress tolerance and competitive growth. Quantitative trait loci analyses allowed the identification of broad genomic regions where genetic polymorphisms potentially impacted these traits, and there was no overlap between the loci associated with each. In addition, we adapted an approach to induce bidirectional UPD of three targeted pairs of chromosomes (IV, XIV, and XV), while heterozygosity was maintained elsewhere in the genome. In most cases UPD led to detectable phenotypic alterations, often in opposite directions between the two homozygous haplotypes in each UPD pair. Our results showed that both widespread and regional homozygosity could uncover cryptic phenotypic variation supported by the heteroalleles residing in the JAY270 genome. Interestingly, we characterized multiple examples of inbred and UPD strains that displayed heat tolerance or competitive growth phenotypes that were superior to their heterozygous parent. However, we propose that homozygosity for those regions may be associated with a decrease in overall fitness in the complex and dynamic distillery environment, and that may have contributed to slowing down the erosion of heterozygosity from the JAY270 genome. This study also laid a foundation for approaches that can be expanded to the identification of specific alleles of interest for industrial applications in this and other hybrid yeast strains.

20.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652105

RESUMEN

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA