RESUMEN
Cancer is believed to arise primarily through accumulation of genetic mutations. Although induced pluripotent stem cell (iPSC) generation does not require changes in genomic sequence, iPSCs acquire unlimited growth potential, a characteristic shared with cancer cells. Here, we describe a murine system in which reprogramming factor expression in vivo can be controlled temporally with doxycycline (Dox). Notably, transient expression of reprogramming factors in vivo results in tumor development in various tissues consisting of undifferentiated dysplastic cells exhibiting global changes in DNA methylation patterns. The Dox-withdrawn tumors arising in the kidney share a number of characteristics with Wilms tumor, a common pediatric kidney cancer. We also demonstrate that iPSCs derived from Dox-withdrawn kidney tumor cells give rise to nonneoplastic kidney cells in mice, proving that they have not undergone irreversible genetic transformation. These findings suggest that epigenetic regulation associated with iPSC derivation may drive development of particular types of cancer.
Asunto(s)
Reprogramación Celular , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Animales , Metilación de ADN , Doxiciclina/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias Renales/inducido químicamente , Ratones , Ratones Transgénicos , Factores de Transcripción/metabolismoRESUMEN
Patatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood. Here, we newly identified 14 individuals from 12 unrelated families with biallelic ultra-rare variants in PNPLA8 presenting with a wide phenotypic spectrum of clinical features. Analysis of the clinical features of current and previously reported individuals (25 affected individuals across 20 families) showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. We found that complete loss of PNPLA8 was associated with the more profound end of the spectrum, with congenital microcephaly. Using cerebral organoids generated from human induced pluripotent stem cells, we found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Spatial transcriptomics revealed that loss of PNPLA8 altered the fate specification of apical radial glial cells, as reflected by the enrichment of gene sets related to the cell cycle, basal radial glial cells and neural differentiation. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. The reduced number of basal radial glial cells in patient-derived cerebral organoids was rescued, in part, by the addition of lysophosphatidic acid. Our data suggest that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development.
Asunto(s)
Microcefalia , Neuroglía , Humanos , Microcefalia/genética , Microcefalia/patología , Femenino , Masculino , Neuroglía/patología , Neuroglía/metabolismo , Niño , Preescolar , Adolescente , Células Madre Pluripotentes Inducidas/metabolismo , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/metabolismo , Lactante , Lipasa/genéticaRESUMEN
AIM: Bipolar disorder (BD) is a common psychiatric disorder characterized by alterations between manic/hypomanic and depressive states. Rare pathogenic copy number variations (CNVs) that overlap with exons of synaptic genes have been associated with BD. However, no study has comprehensively explored CNVs in synaptic genes associated with BD. Here, we evaluated the relationship between BD and rare CNVs that overlap with synaptic genes, not limited to exons, in the Japanese population. METHODS: Using array comparative genome hybridization, we detected CNVs in 1839 patients with BD and 2760 controls. We used the Synaptic Gene Ontology database to identify rare CNVs that overlap with synaptic genes. Using gene-based analysis, we compared their frequencies between the BD and control groups. We also searched for synaptic gene sets related to BD. The significance level was set to a false discovery rate of 10%. RESULTS: The RNF216 gene was significantly associated with BD (odds ratio, 4.51 [95% confidence interval, 1.66-14.89], false discovery rate < 10%). The BD-associated CNV that corresponded with RNF216 also partially overlapped with the minimal critical region of the 7p22.1 microduplication syndrome. The integral component of the postsynaptic membrane (Gene Ontology:0099055) was significantly associated with BD. The CNV overlapping with the intron region of GRM5 in this gene set showed a nominal significant association between cases and controls (P < 0.05). CONCLUSION: We provide evidence that CNVs in RNF216 and postsynaptic membrane-related genes confer a risk of BD, contributing to a better understanding of the pathogenesis of BD.
RESUMEN
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Asunto(s)
Células Madre Pluripotentes Inducidas , Trastornos Mentales , Animales , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Calidad de VidaRESUMEN
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Asunto(s)
Trastorno del Espectro Autista , Ensamble y Desensamble de Cromatina , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Japón , Mutación Missense , Proteínas Nucleares/genética , Esquizofrenia , Factores de Transcripción/genéticaRESUMEN
Although small-scale studies have described the effects of oxytocin on social deficits in autism spectrum disorder (ASD), no large-scale study has been conducted. In this randomized, parallel-group, multicenter, placebo-controlled, double-blind trial in Japan, 106 ASD individuals (18-48 y.o.) were enrolled between Jan 2015 and March 2016. Participants were randomly assigned to a 6-week intranasal oxytocin (48IU/day, n = 53) or placebo (n = 53) group. One-hundred-three participants were analyzed. Since oxytocin reduced the primary endpoint, Autism Diagnostic Observation Schedule (ADOS) reciprocity, (from 8.5 to 7.7; P < .001) but placebo also reduced the score (8.3 to 7.2; P < .001), no between-group difference was found (effect size -0.08; 95% CI, -0.46 to 0.31; P = .69); however, plasma oxytocin was only elevated from baseline to endpoint in the oxytocin-group compared with the placebo-group (effect size -1.12; -1.53 to -0.70; P < .0001). Among the secondary endpoints, oxytocin reduced ADOS repetitive behavior (2.0 to 1.5; P < .0001) compared with placebo (2.0 to 1.8; P = .43) (effect size 0.44; 0.05 to 0.83; P = .026). In addition, the duration of gaze fixation on socially relevant regions, another secondary endpoint, was increased by oxytocin (41.2 to 52.3; P = .03) compared with placebo (45.7 to 40.4; P = .25) (effect size 0.55; 0.10 to 1.0; P = .018). No significant effects were observed for the other secondary endpoints. No significant difference in the prevalence of adverse events was observed between groups, although one participant experienced temporary gynecomastia during oxytocin administration. Based on the present findings, we cannot recommend continuous intranasal oxytocin treatment alone at the current dose and duration for treatment of the core social symptoms of high-functioning ASD in adult men, although this large-scale trial suggests oxytocin's possibility to treat ASD repetitive behavior.
Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Oxitocina/administración & dosificación , Oxitocina/uso terapéutico , Administración Intranasal , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Método Doble Ciego , Ginecomastia/inducido químicamente , Humanos , Japón , Masculino , Persona de Mediana Edad , Oxitocina/efectos adversos , Oxitocina/sangre , Adulto JovenRESUMEN
Discrepancies in efficacy between single-dose and repeated administration of oxytocin for autism spectrum disorder have led researchers to hypothesize that time-course changes in efficacy are induced by repeated administrations of the peptide hormone. However, repeatable, objective, and quantitative measurement of autism spectrum disorder's core symptoms are lacking, making it difficult to examine potential time-course changes in efficacy. We tested this hypothesis using repeatable, objective, and quantitative measurement of the core symptoms of autism spectrum disorder. We examined videos recorded during semi-structured social interaction administered as the primary outcome in single-site exploratory (n = 18, crossover within-subjects design) and multisite confirmatory (n = 106, parallel-group design), double-blind, placebo-controlled 6-week trials of repeated intranasal administrations of oxytocin (48 IU/day) in adult males with autism spectrum disorder. The main outcomes were statistical representative values of objectively quantified facial expression intensity in a repeatable part of the Autism Diagnostic Observation Schedule: the maximum probability (i.e. mode) and the natural logarithm of mode on the probability density function of neutral facial expression and the natural logarithm of mode on the probability density function of happy expression. Our recent study revealed that increases in these indices characterize autistic facial expression, compared with neurotypical individuals. The current results revealed that oxytocin consistently and significantly decreased the increased natural logarithm of mode on the probability density function of neutral facial expression compared with placebo in exploratory (effect-size, -0.57; 95% CI, -1.27 to 0.13; P = 0.023) and confirmatory trials (-0.41; -0.62 to -0.20; P < 0.001). A significant interaction between time-course (at baseline, 2, 4, 6, and 8 weeks) and the efficacy of oxytocin on the natural logarithm of mode on the probability density function of neutral facial expression was found in confirmatory trial (P < 0.001). Post hoc analyses revealed maximum efficacy at 2 weeks (P < 0.001, Cohen's d = -0.78; 95% CI, -1.21 to -0.35) and deterioration of efficacy at 4 weeks (P = 0.042, Cohen's d = -0.46; 95% CI, -0.90 to -0.01) and 6 weeks (P = 0.10, Cohen's d = -0.35; 95% CI, -0.77 to 0.08), while efficacy was preserved at 2 weeks post-treatment (i.e. 8 weeks) (P < 0.001, Cohen's d = -1.24; 95% CI, -1.71 to -0.78). Quantitative facial expression analyses successfully verified the positive effects of repeated oxytocin on autistic individuals' facial expressions and demonstrated a time-course change in efficacy. The current findings support further development of an optimized regimen of oxytocin treatment.
Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/psicología , Expresión Facial , Oxitocina/administración & dosificación , Oxitocina/uso terapéutico , Administración Intranasal , Adolescente , Adulto , Estudios Cruzados , Método Doble Ciego , Humanos , Relaciones Interpersonales , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto JovenRESUMEN
AIM: A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia. METHODS: A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed. RESULTS: The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice. CONCLUSION: The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.
Asunto(s)
Conducta Animal/fisiología , Moléculas de Adhesión Celular Neuronal , Cerebelo/patología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular , Proteínas del Tejido Nervioso , Neuronas/patología , Esquizofrenia/genética , Serina Endopeptidasas , Conducta Social , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Exones/genética , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Proteína Reelina , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismoRESUMEN
Toll-like receptor (TLR) agonists have been shown to have anti-tumour activity in basic research and clinical studies. However, TLR agonist monotherapy does not sufficiently eliminate tumours. Activation of the innate immune response by TLR agonists is effective at driving adaptive immunity via interleukin-12 (IL-12) or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, transforming growth factor-ß, and indoleamine 2,3-dioxygenase (IDO). In the present study, we evaluated the anti-cancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of IDO activity. The administration of IMQ in IDO knockout (KO) mice inoculated with tumour cells significantly suppressed tumour progression compared with that in wild-type (WT) mice, and improved the survival rate. Moreover, injection with IMQ enhanced the tumour antigen-specific T helper type 1 response in IDO-KO mice with tumours. Combination therapy with IMQ and an IDO inhibitor also significantly inhibited tumour growth. Our results indicated that the enhancement of IDO expression with TLR agonists in cancer treatment might impair host anti-tumour immunity while the inhibition of IDO could enhance the therapeutic efficacy of TLR agonists via the increase of T helper type 1 immune response.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias del Colon/tratamiento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Ganglios Linfáticos/efectos de los fármacos , Glicoproteínas de Membrana/agonistas , Timoma/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Receptor Toll-Like 7/agonistas , Aminoquinolinas/administración & dosificación , Animales , Línea Celular Tumoral , Neoplasias del Colon/enzimología , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Relación Dosis-Respuesta a Droga , Femenino , Imiquimod , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Timoma/enzimología , Timoma/genética , Timoma/inmunología , Timoma/patología , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología , Factores de Tiempo , Receptor Toll-Like 7/metabolismo , Triptófano/administración & dosificación , Triptófano/análogos & derivados , Carga Tumoral/efectos de los fármacosRESUMEN
Toll-like receptor (TLR) agonists have been shown to have anti-tumor activity in basic research and clinical studies. However, TLR agonist monotherapy in cancer treatment dose not sufficiently eliminate tumors. Activation of the innate immune response by TLR agonists and other pathogen-associated molecular patterns is effective for driving adaptive immunity via interleukin (IL)-12 or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, tumor growth factor-ß, and induced nitric oxide synthase (iNOS). In the present study, we evaluated the anticancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of iNOS. The administration of IMQ in iNOS-knockout (KO) mice implanted with tumor cells significantly suppressed tumor progression as compared to that in wild-type mice and improved the survival rate. Moreover, injection with IMQ enhanced the tumor antigen-specific Th1 response in iNOS-KO mice with tumors. The enhancement of the antigen-specific Th1 response was associated with an increase in IL-2 and IL-12b expressions in the tumor-draining lymph nodes. Combination therapy with IMQ and an iNOS inhibitor also significantly inhibited tumor growth in the established tumor model. Finally, our results indicated that the enhancement of iNOS expression through the administration with TLR agonists impairs host anti-tumor immunity, while the inhibition of iNOS could enhance the therapeutic efficacy of TLR agonists via the increase in Th1 immune response.
Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Inmunoterapia , Glicoproteínas de Membrana/agonistas , Neoplasias Experimentales/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/fisiología , Receptor Toll-Like 7/agonistas , Animales , Citocinas/genética , Citocinas/metabolismo , Femenino , Citometría de Flujo , Imiquimod , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales CultivadasRESUMEN
BACKGROUND AND AIM: The liver has a high capacity of its regeneration. Most hepatic cells are quiescent unless otherwise stimulated such as their injury or ablation. A previous study suggest that pre-activated hepatic cells have a positive effect on their regeneration. In this study, we examined whether the pre-activated hepatic cells for regeneration accelerate the subsequent liver regeneration. METHODS: We administered a single injection of carbon tetrachloride (CCl4) to mice 7 days before partial hepatectomy (PHx). Liver weight/body weight ratio and several parameters for cell proliferation such as mitotic index and the number of Ki67 positive cells in the liver were examined after PHx as indexes of liver regeneration. RESULTS: Compared to control mice, those pre-stimulated with CCl4 showed earlier liver regeneration 48 h after PHx. Regardless of their accelerated regeneration, pre-stimulated mice showed less cell proliferation than did control mice during liver regeneration. Hepatic fibrosis was not observed in both control and CCl4-pretreated mice after PHx. Mice pre-treated with CCl4 showed the higher matrix metalloproteinase 9 (MMP9) expression than those pre-treated with olive oil. When matrix metalloproteinase 9 (MMP9) activity was inhibited, the pre-stimulated mice did not demonstrate accelerated liver regeneration and they returned to the original state for cell proliferations after PHx. CONCLUSIONS: Pre-activated liver by CCl4 promoted its subsequent regeneration after PHx. This was not a cause of fibrosis and partly dependent on MMP9 pre-activity rather than cell proliferation in liver. Our findings would not only provide a novel strategy for liver regeneration without cell proliferation as much as possible and also propose a new method for liver transplantation.
Asunto(s)
Tetracloruro de Carbono/farmacología , Hepatectomía , Regeneración Hepática/efectos de los fármacos , Alanina Transaminasa/sangre , Animales , Proliferación Celular , Metaloproteinasa 9 de la Matriz/análisis , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , ARN/aislamiento & purificación , Factores de Tiempo , Triglicéridos/análisisRESUMEN
The activity of IDO that catalyzes the degradation of tryptophan (Trp) into kynurenine (Kyn) increases after diseases caused by different infectious agents. Previously, we demonstrated that IDO has an important immunomodulatory function in immune-related diseases. However, the pathophysiological role of IDO following acute viral infection is not fully understood. To investigate the role of IDO in the l-Trp-Kyn pathway during acute viral myocarditis, mice were infected with encephalomyocarditis virus, which induces acute myocarditis. We used IDO-deficient (IDO(-/-)) mice and mice treated with 1-methyl-d,l-Trp (1-MT), an inhibitor of IDO, to study the importance of Trp-Kyn pathway metabolites. Postinfection with encephalomyocarditis virus infection, the serum levels of Kyn increased, whereas those of Trp decreased, and IDO activity increased in the spleen and heart. The survival rate of IDO(-/-) or 1-MT-treated mice was significantly greater than that of IDO(+/+) mice. Indeed, the viral load was suppressed in the IDO(-/-) or 1-MT-treated mice. Furthermore, the levels of type I IFNs in IDO(-/-) mice and IDO(-/-) bone marrow-transplanted IDO(+/+) mice were significantly higher than those in IDO(+/+) mice, and treatment of IDO(-/-) mice with Kyn metabolites eliminated the effects of IDO(-/-) on the improved survival rates. These results suggest that IDO has an important role in acute viral myocarditis. Specifically, IDO increases the accumulation of Kyn pathway metabolites, which suppress type I IFNs production and enhance viral replication. We concluded that inhibition of the Trp-Kyn pathway ameliorates acute viral myocarditis.
Asunto(s)
Infecciones por Cardiovirus/inmunología , Virus de la Encefalomiocarditis , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Quinurenina/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Triptófano/inmunología , Enfermedad Aguda , Animales , Infecciones por Cardiovirus/mortalidad , Infecciones por Cardiovirus/virología , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Quinurenina/sangre , Masculino , Ratones , Ratones Noqueados , Miocarditis/mortalidad , Miocarditis/virología , Miocardio/metabolismo , Transducción de Señal/inmunología , Bazo/inmunología , Bazo/metabolismo , Bazo/virología , Tasa de Supervivencia , Triptófano/análogos & derivados , Triptófano/sangre , Triptófano/farmacología , Carga Viral/efectos de los fármacos , Replicación ViralRESUMEN
1q21.1 deletion has been identified as a risk factor related to not only mental disorders such as schizophrenia, but also congenital heart defects. However, at human cellular and molecular levels, it is still not known how this variant affects brain and heart development and contributes to the onset of these diseases. Here, we generated induced pluripotent stem cells (iPSCs) from a patient with 1q21.1 deletion. The iPSCs expressed stemness markers and exhibited the ability to differentiate into three germ layers in vitro. These iPSCs will be useful tools to understand the pathophysiology of mental disorders and heart defects in humans.
RESUMEN
Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.
Asunto(s)
Glicoproteínas , Células Madre Pluripotentes Inducidas , Trastornos Mentales , Proteínas del Tejido Nervioso , Neuronas , Humanos , Diferenciación Celular/genética , Variaciones en el Número de Copia de ADN , Eliminación de Gen , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos Mentales/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción/genética , Glicoproteínas/genética , Proteínas del Tejido Nervioso/genéticaRESUMEN
Indoleamine 2,3-dioxygenase 2 (IDO2) is an enzyme of the tryptophan-kynurenine pathway that is constitutively expressed in the brain. To provide insight into the physiological role of IDO2 in the brain, behavioral and neurochemical analyses in IDO2 knockout (KO) mice were performed. IDO2 KO mice showed stereotyped behavior, restricted interest and social deficits, traits that are associated with behavioral endophenotypes of autism spectrum disorder (ASD). IDO2 was colocalized immunohistochemically with tyrosine-hydroxylase-positive cells in dopaminergic neurons. In the striatum and amygdala of IDO2 KO mice, decreased dopamine turnover was associated with increased α-synuclein level. Correspondingly, levels of downstream dopamine D1 receptor signaling molecules such as brain-derived neurotrophic factor and c-Fos positive proteins were decreased. Furthermore, decreased abundance of ramified-type microglia resulted in increased dendritic spine density in the striatum of IDO2 KO mice. Both chemogenetic activation of dopaminergic neurons and treatment with methylphenidate, a dopamine reuptake inhibitor, ameliorated the ASD-like behavior of IDO2 KO mice. Sequencing analysis of exon regions in IDO2 from 309 ASD samples identified a rare canonical splice site variant in one ASD case. These results suggest that the IDO2 gene is, at least in part, a factor closely related to the development of psychiatric disorders.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Humanos , Ratones , Trastorno del Espectro Autista/genética , Dopamina , Neuronas Dopaminérgicas , Indolamina-Pirrol 2,3,-Dioxigenasa/genéticaRESUMEN
Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag. We generated 3q29-del mice using genome editing technology and reevaluated common behavioral phenotypes. We next implanted Nano-tag in the abdominal cavity of mice for continuous measurements of long-time activity and body temperature. Our model mice exhibited weight loss similar to that of other mice reported previously. A general behavioral battery test in the model mice revealed phenotypes similar to those observed in mouse models of schizophrenia, including increased rearing frequency. Intraperitoneal implantation of Nano-tag, a miniature acceleration sensor, resulted in hypersensitive and rapid increases in the activity and body temperature of 3q29-del mice upon switching to lights-off condition. Similar to the 3q29-del mice reported previously, these mice are a promising model animals for schizophrenia. Successive quantitative analysis may provide results that could help in treating sleep disorders closely associated with neuropsychiatric disorders.
Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Humanos , Niño , Ratones , Animales , Discapacidades del Desarrollo/genética , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Temperatura Corporal , Discapacidad Intelectual/genética , Modelos Animales de Enfermedad , FenotipoRESUMEN
Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.
Asunto(s)
Trastorno Bipolar , Temperatura Corporal , Cadherinas , Modelos Animales de Enfermedad , Locomoción , Ratones Noqueados , Animales , Masculino , Ratones , Conducta Animal , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Cadherinas/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Locomoción/genética , Ratones Endogámicos C57BL , Inhibición Prepulso/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , ProtocadherinasRESUMEN
Indoleamine 2,3-dioxygenase 1 (IDO1), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs) production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.
Asunto(s)
Enfermedades Transmisibles/enzimología , Enfermedades Transmisibles/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano/metabolismo , Animales , Humanos , Interferón Tipo I/metabolismoRESUMEN
The use of mesenchymal stem/stromal cells (MSCs) has attracted attention in the field of regenerative medicine based on their anti-inflammatory and tissue repair-promoting effects. Bone marrow is widely used as a source of MSCs; however, the performance of bone marrow (BM)-MSCs deteriorates as the cells age along with cell passaging. Recently, it has been reported that MSCs can be generated from induced pluripotent stem cells (iPSCs), which is expected to represent a new source of MSCs. However, few studies have investigated aging in iPSC-derived MSCs (iMSCs) and their functions. In this study, we investigated whether iMSCs overcome cellular senescence compared to that in BM-MSCs. Cellular senescence was quantitatively evaluated by staining iMSCs and BM-MSCs with fluorescein di-ß-D-galactopyranoside (FDG) and following flow cytometer analysis. The hepatocyte growth factor (HGF) concentration in the culture supernatant was also measured as a factor in the therapeutic efficacy of nephritis. The iMSCs did not reach their proliferation limit and their morphology did not change even after 10 passages. The FDG positivity of BM-MSCs increased with passaging, whereas that in iMSCs did not increase. The HGF concentration increased with passaging in iMSCs. In conclusion, our results suggest that iMSCs may be less susceptible to senescence than BM-MSCs and may be used in clinical applications.
RESUMEN
The regulation of local L-tryptophan concentrations by tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO) induced by various stimuli such as interferon-γ (IFN-γ) is one of the key mechanisms in antimicrobial effect. Recently, IDO is also focused on an immunosuppressive mechanism shared by several different immune cell types. Here, we show that inhibition of increased IDO activity maybe involved in the antiparasitic mechanism during Toxoplasma gondii (T. gondii) infection in vivo. In this study, we investigated the role of IDO by using IDO-gene-deficient (IDO KO) mice and by administering a competitive enzyme inhibitor, 1-methyl-D,L-tryptophan (1MT), to wild-type mice following T. gondii infection. Although depletion of lung l-tryptophan did not occur in IDO KO mice after T. gondii infection, the increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) and the inflammatory cytokines in the lung were drastically reduced in the IDO KO mice following infection. We also found that complete depletion of lung l-tryptophan was observed in wild-type mice after infection, but not in mice treated with 1MT. At the same time, 1MT suppressed the increased mRNA expression of SAG2. Taken together, we observed that the inflammatory damage was significantly decreased by the administration of 1MT in the lung after infection. Inhibition of the IDO activity or the elimination of IDO's substrate may be an effective therapy against microbial diseases.