Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cell ; 83(16): 2872-2883.e7, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595555

RESUMEN

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Cromatina/genética , Microscopía por Crioelectrón , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Lisina , Nucleosomas/genética , Humanos
2.
Mol Cell ; 74(5): 1010-1019.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981630

RESUMEN

The essential histone H3 lysine 79 methyltransferase Dot1L regulates transcription and genomic stability and is deregulated in leukemia. The activity of Dot1L is stimulated by mono-ubiquitination of histone H2B on lysine 120 (H2BK120Ub); however, the detailed mechanism is not understood. We report cryo-EM structures of human Dot1L bound to (1) H2BK120Ub and (2) unmodified nucleosome substrates at 3.5 Å and 4.9 Å, respectively. Comparison of both structures, complemented with biochemical experiments, provides critical insights into the mechanism of Dot1L stimulation by H2BK120Ub. Both structures show Dot1L binding to the same extended surface of the histone octamer. In yeast, this surface is used by silencing proteins involved in heterochromatin formation, explaining the mechanism of their competition with Dot1. These results provide a strong foundation for understanding conserved crosstalk between histone modifications found at actively transcribed genes and offer a general model of how ubiquitin might regulate the activity of chromatin enzymes.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Lisina/química , Conformación Proteica , Sitios de Unión , Microscopía por Crioelectrón , Genoma Humano/genética , Inestabilidad Genómica/genética , Heterocromatina/química , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Leucemia/genética , Lisina/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleosomas/química , Nucleosomas/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitinación/genética
3.
J Biol Chem ; 299(5): 104697, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044215

RESUMEN

The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate ten recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscores the roles of the structure, conformation, and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.


Asunto(s)
Proteasas 3C de Coronavirus , Poliproteínas , Proteolisis , SARS-CoV-2 , Humanos , Poliproteínas/metabolismo , SARS-CoV-2/metabolismo , Proteasas 3C de Coronavirus/metabolismo
4.
Nature ; 562(7728): E25, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108362

RESUMEN

In this Article, ref. 15 has been replaced and references 32 to 50 have been renumbered online.

5.
Nature ; 559(7715): 570-574, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995855

RESUMEN

The mitochondrial calcium uniporter (MCU) is a highly selective calcium channel localized to the inner mitochondrial membrane. Here, we describe the structure of an MCU orthologue from the fungus Neosartorya fischeri (NfMCU) determined to 3.8 Å resolution by phase-plate cryo-electron microscopy. The channel is a homotetramer with two-fold symmetry in its amino-terminal domain (NTD) that adopts a similar structure to that of human MCU. The NTD assembles as a dimer of dimers to form a tetrameric ring that connects to the transmembrane domain through an elongated coiled-coil domain. The ion-conducting pore domain maintains four-fold symmetry, with the selectivity filter positioned at the start of the pore-forming TM2 helix. The aspartate and glutamate sidechains of the conserved DIME motif are oriented towards the central axis and separated by one helical turn. The structure of NfMCU offers insights into channel assembly, selective calcium permeation, and inhibitor binding.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Neosartorya/química , Sitios de Unión , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Compuestos de Rutenio/farmacología , Solubilidad
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475207

RESUMEN

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.


Asunto(s)
GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Paenibacillus/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/genética , Ligandos , Paenibacillus/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Dominios Proteicos/genética , Sistemas de Mensajero Secundario/genética
7.
Biochemistry ; 60(49): 3801-3812, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843212

RESUMEN

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.


Asunto(s)
Proteínas Bacterianas/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Hemo/química , Hemoproteínas/química , Paenibacillus/química , Hidrolasas Diéster Fosfóricas/química , Liasas de Fósforo-Oxígeno/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , GMP Cíclico/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Cinética , Modelos Moleculares , Oxígeno/química , Oxígeno/metabolismo , Paenibacillus/enzimología , Paenibacillus/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Nature ; 520(7548): 511-7, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25855297

RESUMEN

The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to ∼4 Å resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/ultraestructura , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Regulación Alostérica , Analgésicos , Repetición de Anquirina , Antiinflamatorios , Sitios de Unión , Canales de Calcio/metabolismo , Citosol/metabolismo , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Polifosfatos/metabolismo , Polifosfatos/farmacología , Estabilidad Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(39): E9095-E9104, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30190435

RESUMEN

Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca2+-binding site (Cai2+), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca2+ to a cytoplasmic site (Caa2+). An X-ray structure with Caa2+ removed and a near-atomic resolution cryo-EM structure with Cai2+ removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca2+ ions for activation.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Canales de Calcio/química , Activación del Canal Iónico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Relación Estructura-Actividad
11.
Nature ; 506(7486): 107-10, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24499919

RESUMEN

The biogenesis of secretory as well as transmembrane proteins requires the activity of the universally conserved protein-conducting channel (PCC), the Sec61 complex (SecY complex in bacteria). In eukaryotic cells the PCC is located in the membrane of the endoplasmic reticulum where it can bind to translating ribosomes for co-translational protein transport. The Sec complex consists of three subunits (Sec61α, ß and γ) and provides an aqueous environment for the translocation of hydrophilic peptides as well as a lateral opening in the Sec61α subunit that has been proposed to act as a gate for the membrane partitioning of hydrophobic domains. A plug helix and a so-called pore ring are believed to seal the PCC against ion flow and are proposed to rearrange for accommodation of translocating peptides. Several crystal and cryo-electron microscopy structures revealed different conformations of closed and partially open Sec61 and SecY complexes. However, in none of these samples has the translocation state been unambiguously defined biochemically. Here we present cryo-electron microscopy structures of ribosome-bound Sec61 complexes engaged in translocation or membrane insertion of nascent peptides. Our data show that a hydrophilic peptide can translocate through the Sec complex with an essentially closed lateral gate and an only slightly rearranged central channel. Membrane insertion of a hydrophobic domain seems to occur with the Sec complex opening the proposed lateral gate while rearranging the plug to maintain an ion permeability barrier. Taken together, we provide a structural model for the basic activities of the Sec61 complex as a protein-conducting channel.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Complejos Multiproteicos/ultraestructura , Péptidos/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/química , Ribosomas/metabolismo , Animales , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Perros , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Péptidos/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ribosomas/química , Ribosomas/ultraestructura , Canales de Translocación SEC
12.
Nat Methods ; 13(4): 345-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950744

RESUMEN

A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state.


Asunto(s)
Proteínas Bacterianas/química , Proteína gp120 de Envoltorio del VIH/química , Lípidos/química , Proteínas de la Membrana/química , Nanopartículas/química , Saposinas/química , Simportadores/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Conformación Proteica , Saposinas/metabolismo , Simportadores/metabolismo
13.
Nature ; 497(7447): 80-5, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23636399

RESUMEN

Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.


Asunto(s)
Drosophila melanogaster/química , Ribosomas/química , Ribosomas/ultraestructura , Animales , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Drosophila melanogaster/ultraestructura , Células Eucariotas , Evolución Molecular , Humanos , Modelos Moleculares , Conformación Molecular , Peso Molecular , Factor 2 de Elongación Peptídica/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
14.
J Struct Biol ; 204(2): 291-300, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114512

RESUMEN

The recent successes of cryo-electron microscopy fostered great expectation of solving many new and previously recalcitrant biomolecular structures. However, it also brings with it the danger of compromising the validity of the outcomes if not done properly. The Map Challenge is a first step in assessing the state of the art and to shape future developments in data processing. The organizers presented seven cases for single particle reconstruction, and 27 members of the community responded with 66 submissions. Seven groups analyzed these submissions, resulting in several assessment reports, summarized here. We devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity and interpretation through modeling. Unfortunately, we did not find strong trends. We ascribe this to the complexity of the challenge, dealing with multiple cases, software packages and processing approaches. This puts the user in the spotlight, where his/her choices becomes the determinant of map quality. The future focus should therefore be on promulgating best practices and encapsulating these in the software. Such practices include adherence to validation principles, most notably the processing of independent sets, proper resolution-limited alignment, appropriate masking and map sharpening. We consider the Map Challenge to be a highly valuable exercise that should be repeated frequently or on an ongoing basis.


Asunto(s)
Microscopía por Crioelectrón/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Conformación Proteica , Programas Informáticos
15.
Nature ; 482(7386): 501-6, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22358840

RESUMEN

Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.


Asunto(s)
Evolución Molecular , Pyrococcus furiosus/química , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Movimiento , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Pyrococcus furiosus/metabolismo , Ribosomas/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nucleic Acids Res ; 41(2): 1284-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222135

RESUMEN

In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity.


Asunto(s)
Proteínas Arqueales/química , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas Arqueales/clasificación , Sitios de Unión , Microscopía por Crioelectrón , Desulfurococcaceae/química , Eucariontes/química , Euryarchaeota/química , Evolución Molecular , Modelos Moleculares , Pyrococcus furiosus/química , Proteínas Ribosómicas/clasificación , Subunidades Ribosómicas Grandes de Archaea/química
19.
Nucleic Acids Res ; 40(Database issue): D495-500, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22009674

RESUMEN

The ribosome is a highly dynamic machine responsible for protein synthesis within the cell. Cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of ribosomal particles, alone and in complex with diverse ligands (protein factors, RNAs and small molecules), have revealed the dynamic nature of the ribosome and provided much needed insight into translation and its regulation. In the past years, there has been exponential growth in the deposition of cryo-EM maps into the Electron Microscopy Data Bank (EMDB) as well as atomic structures into the Protein Data Bank (PDB). Unfortunately, the deposited ribosomal particles usually have distinct orientations with respect to one another, which complicate the comparison of the available structures. To simplify this, we have developed a Database of Aligned Ribosomal Complexes, the DARC site (http://darcsite.genzentrum.lmu.de/darc/), which houses the available cryo-EM maps and atomic coordinates of ribosomal particles from the EMDB and PDB aligned within a common coordinate system. An easy-to-use, searchable interface allows users to access and download >130 cryo-EM maps and >300 atomic models in the format of brix and pdb files, respectively. The aligned coordinate system substantially simplifies direct visualization of conformational changes in the ribosome, such as subunit rotation and head-swiveling, as well as direct comparison of bound ligands, such as antibiotics or translation factors.


Asunto(s)
Bases de Datos de Proteínas , Ribosomas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Interfaz Usuario-Computador
20.
Nat Commun ; 15(1): 2225, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472177

RESUMEN

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.


Asunto(s)
Grafito , Nucleosomas , Grafito/química , Microscopía por Crioelectrón , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA