RESUMEN
Toscana virus (TOSV) (Bunyavirales, Phenuiviridae, Phlebovirus, Toscana phlebovirus) and other related human pathogenic arboviruses are transmitted by phlebotomine sand flies. TOSV has been reported in nations bordering the Mediterranean Sea among other regions. Infection can result in febrile illness as well as meningitis and encephalitis. Understanding vector-arbovirus interactions is crucial to improving our knowledge of how arboviruses spread, and in this context, immune responses that control viral replication play a significant role. Extensive research has been conducted on mosquito vector immunity against arboviruses, with RNA interference (RNAi) and specifically the exogenous siRNA (exo-siRNA) pathway playing a critical role. However, the antiviral immunity of phlebotomine sand flies is less well understood. Here we were able to show that the exo-siRNA pathway is active in a Phlebotomus papatasi-derived cell line. Following TOSV infection, distinctive 21 nucleotide virus-derived small interfering RNAs (vsiRNAs) were detected. We also identified the exo-siRNA effector Ago2 in this cell line, and silencing its expression rendered the exo-siRNA pathway largely inactive. Thus, our data show that this pathway is active as an antiviral response against a sand fly transmitted bunyavirus, TOSV.
Asunto(s)
Arbovirus , Phlebotomus , Phlebovirus , Psychodidae , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Animales , Humanos , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , Phlebotomus/genética , Psychodidae/genética , Interferencia de ARN , Phlebovirus/genética , Arbovirus/genética , ARN Interferente Pequeño/genéticaRESUMEN
In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.
RESUMEN
While locally-acquired dengue virus (DENV) human infections occur in mainland France since 2010, data to identify the mosquito species involved and to trace the virus are frequently lacking. Supported by a local network gathering public health agencies and research laboratories, we analysed, in late summer 2023, mosquitoes from privately-owned traps within a French urban neighbourhood affected by a dengue cluster. The cluster, in Auvergne-Rhône-Alpes, comprised three cases, including two autochthonous ones. Upon return from a recent visit to the French Caribbean Islands, the third case had consulted healthcare because of dengue-compatible symptoms, but dengue had not been recognised. For the two autochthonous cases, DENV-specific antibodies in serum or a positive quantitative PCR for DENV confirmed DENV infection. The third case had anti-flavivirus IgMs. No DENV genetic sequences were obtained from affected individuals but Aedes albopictus mosquitoes trapped less than 200 m from the autochthonous cases' residence contained DENV. Genetic data from the mosquito-derived DENV linked the cluster to the 2023-2024 dengue outbreak in the French Caribbean Islands. This study highlights the importance of raising mosquito-borne disease awareness among healthcare professionals. It demonstrates Ae. albopictus as a DENV vector in mainland France and the value of private mosquito traps for entomo-virological surveillance.
Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Aedes/virología , Humanos , Dengue/transmisión , Dengue/epidemiología , Dengue/diagnóstico , Dengue/virología , Francia/epidemiología , Virus del Dengue/aislamiento & purificación , Virus del Dengue/genética , Mosquitos Vectores/virología , Brotes de Enfermedades , Femenino , Estaciones del AñoRESUMEN
Transposable elements (TEs) are genomic parasites that are found in all genomes, some of which display sequence similarity to certain viruses. In insects, TEs are controlled by the Piwi-interacting small interfering RNA (piRNA) pathway in gonads, while the small interfering RNA (siRNA) pathway is dedicated to TE somatic control and defense against viruses. So far, these two small interfering RNA pathways are considered to involve distinct molecular effectors and are described as independent. Using Sindbis virus (SINV) in Drosophila, here we show that viral infections affect TE transcript amounts via modulations of the piRNA and siRNA repertoires, with the clearest effects in somatic tissues. These results suggest that viral acute or chronic infections may impact TE activity and, thus, the tempo of genetic diversification. In addition, these results deserve further evolutionary considerations regarding potential benefits to the host, the virus, or the TEs.
Asunto(s)
Infecciones por Alphavirus/virología , Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Interferente Pequeño/genética , Virus Sindbis/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/virología , Evolución Molecular , FemeninoRESUMEN
IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Virión , Replicación Viral , Línea Celular , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Internalización del VirusRESUMEN
UNLABELLED: Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate. IMPORTANCE: BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.
Asunto(s)
Virus de la Lengua Azul/genética , Células Endoteliales/virología , Regulación Viral de la Expresión Génica , Genoma Viral , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Animales , Aorta/metabolismo , Aorta/patología , Aorta/virología , Virus de la Lengua Azul/química , Virus de la Lengua Azul/metabolismo , Línea Celular Transformada , Ceratopogonidae , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Plexo Coroideo/virología , Cricetulus , Células Endoteliales/metabolismo , Células Endoteliales/patología , Especificidad del Huésped , Ratones , Datos de Secuencia Molecular , Cultivo Primario de Células , Estabilidad Proteica , Proteolisis , Genética Inversa , Ovinos , Transducción de Señal , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Liberación del Virus/genéticaRESUMEN
UNLABELLED: Bone marrow stromal cell antigen 2 (BST2) is a cellular restriction factor with a broad antiviral activity. In sheep, the BST2 gene is duplicated into two paralogs termed oBST2A and oBST2B. oBST2A impedes viral exit of the Jaagsiekte sheep retroviruses (JSRV), most probably by retaining virions at the cell membrane, similar to the "tethering" mechanism exerted by human BST2. In this study, we provide evidence that unlike oBST2A, oBST2B is limited to the Golgi apparatus and disrupts JSRV envelope (Env) trafficking by sequestering it. In turn, oBST2B leads to a reduction in Env incorporation into viral particles, which ultimately results in the release of virions that are less infectious. Furthermore, the activity of oBST2B does not seem to be restricted to retroviruses, as it also acts on vesicular stomatitis virus glycoproteins. Therefore, we suggest that oBST2B exerts antiviral activity using a mechanism distinct from the classical tethering restriction observed for oBST2A. IMPORTANCE: BST2 is a powerful cellular restriction factor against a wide range of enveloped viruses. Sheep possess two paralogs of the BST2 gene called oBST2A and oBST2B. JSRV, the causative agent of a transmissible lung cancer of sheep, is known to be restricted by oBST2A. In this study, we show that unlike oBST2A, oBST2B impairs the normal cellular trafficking of JSRV envelope glycoproteins by sequestering them within the Golgi apparatus. We also show that oBST2B decreases the incorporation of envelope glycoprotein into JSRV viral particles, which in turn reduces virion infectivity. In conclusion, oBST2B exerts a novel antiviral activity that is distinct from those of BST2 proteins of other species.
Asunto(s)
Retrovirus Ovino Jaagsiekte/inmunología , Retrovirus Ovino Jaagsiekte/fisiología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Virión/metabolismo , Ensamble de Virus , Animales , Aparato de Golgi/metabolismo , Transporte de Proteínas , OvinosRESUMEN
The Rift Valley fever virus (RVFV) is an arthropod-borne, zoonotic, hemorrhagic fever virus that can cause severe diseases both in livestock and humans. The spread of RVFV in areas previously considered as non-endemic together with the absence of licensed vaccines for use in humans and animals poses a major health and economic threat worldwide. It is therefore crucial to make major progresses in our understanding and management of this virus and its zoonosis. RVFV is considered a bioterrorism pathogen, and, thus, only a few institutes, facilities, and personnel are legally authorized to detain it and handle it. Moreover, this virus must be manipulated in a biosafety level 3 (BSL3) laboratory following strict biosafety protocols to ensure that biosecurity's highest standards are met. Only certain attenuated strains such as the MP12 strain can be handled in BSL2 laboratories, depending on the country considered. To assist researchers in working with RVFV in the safest possible conditions, this chapter presents validated methods for effective RVFV decontamination and inactivation.
Asunto(s)
Descontaminación , Virus de la Fiebre del Valle del Rift , Inactivación de Virus , Animales , Descontaminación/métodos , Humanos , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/transmisión , Fiebre del Valle del Rift/virología , Contención de Riesgos Biológicos/métodos , Células Vero , Chlorocebus aethiopsRESUMEN
Rift Valley fever virus (RVFV) is an arthropod-borne virus (arbovirus) responsible for a severe zoonotic disease affecting a wide range of domestic and wild ruminants as well as humans. RVFV is endemic in many African countries and has also caused outbreaks in Madagascar and Arabian Peninsula. With regard to its wide geographical distribution, its potential to emerge in a new area, and its capability to trigger major health and economic crisis, it is essential to study and better understand several aspects of its life cycle and, in particular, its interactions with mammalian hosts and arthropod vectors. To do so, it is key for researchers to be able to amplify in vitro viral strains isolated from the field and determine accurately the viral titers of RVFV stocks. In this chapter, we present protocols that can be easily implemented to produce and titrate RVFV stocks in your laboratory.
Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Animales , Fiebre del Valle del Rift/virología , Humanos , Carga Viral , Chlorocebus aethiops , Células Vero , Cultivo de Virus/métodosRESUMEN
Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.
Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/virología , Enfermedades de los Bovinos/virología , Modelos Animales de Enfermedad , Drosophila melanogaster/virología , Tropismo Viral , Replicación Viral , Animales , Virus de la Lengua Azul/genética , Bovinos , Línea Celular , Ceratopogonidae/virología , Drosophila melanogaster/genética , Insectos Vectores/virologíaRESUMEN
Rift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species.
Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Humanos , Animales , Bovinos , Camelus , Zoonosis , Especificidad del Huésped , Interferones , Proteínas de la MembranaRESUMEN
The exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV) coexists with highly related and biologically active endogenous retroviruses (enJSRVs). The endogenous enJS56A1 locus possesses a defective Gag polyprotein which blocks the late replication steps of related exogenous and endogenous retroviruses by a mechanism known as JSRV late restriction (JLR). Conversely, enJSRV-26, which most likely integrated into the sheep genome less than 200 years ago, is able to escape JLR. In this study, we demonstrate that the ability of enJSRV-26 to escape JLR is due to a single-amino-acid substitution in the signal peptide (SP) of its envelope glycoprotein. We show that enJSRV-26 SP does not localize to the nucleolus, unlike the functional SPs of related exogenous and endogenous sheep betaretroviruses. In addition, enJSRV-26 SP function as a posttranscriptional regulator of viral gene expression is impaired. enJSRV-26 JLR escape relies on the presence of the functional enJS56A1 SP. Moreover, we show that the ratio between enJSRV-26 and enJS56A1 Gag is critical to elude JLR. Interestingly, we found that the domestic sheep has acquired, by genome amplification, several copies of the enJS56A1 provirus. These data further reinforce the notion that transdominant enJSRV proviruses have been positively selected in domestic sheep, and that the coevolution between endogenous and exogenous sheep betaretroviruses and their host is still occurring.
Asunto(s)
Betaretrovirus/fisiología , Genes gag , Señales de Clasificación de Proteína , Animales , Betaretrovirus/metabolismo , Western Blotting , Células COS , Línea Celular , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Confocal , Reacción en Cadena de la Polimerasa , OvinosRESUMEN
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Vacunas Virales , Humanos , Animales , Ratones , Vacunas Virales/efectos adversos , Vacunas Atenuadas/efectos adversos , ÁfricaRESUMEN
Endogenous betaretroviruses (enJSRVs) of sheep are expressed abundantly in the female reproductive tract and play a crucial role in conceptus development and placental morphogenesis. Interestingly, the colonization of the sheep genome by enJSRVs is likely still ongoing. During early pregnancy, enJSRV expression correlates with the production of tau interferon (IFNT), a type I IFN, by the developing conceptus. IFNT is the pregnancy recognition signal in ruminants and possesses potent antiviral activity. In this study, we show that IFNT induces the expression of bone marrow stromal cell antigen 2 (BST2) (also termed CD317/tetherin) both in vitro and in vivo. The BST2 gene is duplicated in ruminants. Transfection assays found that ovine BST2 proteins (oBST2A and oBST2B) block release of viral particles produced by intact enJSRV loci and of related exogenous and pathogenic jaagsiekte sheep retrovirus (JSRV). Ovine BST2A appears to restrict enJSRVs more efficiently than oBST2B. In vivo, the expression of BST2A/B and enJSRVs in the endometrium increases after day 12 and remains high between days 14 and 20 of pregnancy. In situ hybridization analyses found that oBST2A is expressed mainly in the endometrial stromal cells but not in the luminal and glandular epithelial cells, in which enJSRVs are highly expressed. In conclusion, enJSRVs may have coevolved in the presence of oBST2A/B by being expressed in different cellular compartments of the same organ. Viral expression in cells unable to express BST2 may be one of the mechanisms used by retroviruses to escape restriction.
Asunto(s)
Antígenos CD/inmunología , Retrovirus Endógenos/crecimiento & desarrollo , Retrovirus Endógenos/inmunología , Glicoproteínas de Membrana/inmunología , Ovinos/virología , Células del Estroma/virología , Animales , Endometrio/virología , Femenino , Interferón Tipo I/inmunología , Retrovirus Ovino Jaagsiekte/crecimiento & desarrollo , Retrovirus Ovino Jaagsiekte/inmunología , EmbarazoRESUMEN
The sheep genome contains multiple copies of endogenous betaretroviruses highly related to the exogenous and oncogenic jaagsiekte sheep retrovirus (JSRV). The endogenous JSRVs (enJSRVs) are abundantly expressed in the uterine luminal and glandular epithelia as well as in the conceptus trophectoderm and are essential for conceptus elongation and trophectoderm growth and development. Of note, enJSRVs are present in sheep and goats but not cattle. At least 5 of the 27 enJSRV loci cloned to date possess an intact genomic organization and are able to produce viral particles in vitro. In this study, we found that enJSRVs form viral particles that are released into the uterine lumen of sheep. In order to test the infectious potential of enJSRV particles in the uterus, we transferred bovine blastocysts into synchronized ovine recipients and allowed them to develop for 13 days. Analysis of microdissected trophectoderm of the bovine conceptuses revealed the presence of enJSRV RNA and, in some cases, DNA. Interestingly, we found that RNAs belonging to only the most recently integrated enJSRV loci were packaged into viral particles and transmitted to the trophectoderm. Collectively, these results support the hypothesis that intact enJSRV loci expressed in the uterine endometrial epithelia are shed into the uterine lumen and could potentially transduce the conceptus trophectoderm. The essential role played by enJSRVs in sheep reproductive biology could also be played by endometrium-derived viral particles that influence development and differentiation of the trophectoderm.
Asunto(s)
Blastocisto/virología , Retrovirus Ovino Jaagsiekte/patogenicidad , Infecciones por Retroviridae/veterinaria , Trofoblastos/virología , Útero/virología , Virión/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/virología , ADN Viral/aislamiento & purificación , Transferencia de Embrión , Femenino , Retrovirus Ovino Jaagsiekte/crecimiento & desarrollo , Retrovirus Ovino Jaagsiekte/aislamiento & purificación , Embarazo , Ovinos , Enfermedades de las Ovejas/virología , Transducción Genética , Esparcimiento de VirusRESUMEN
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. However, no single HERV-K provirus in the human genome today appears to be infectious. Since the Gag protein is the central component for the production of retrovirus particles, we investigated the abilities of Gag from two HERV-K proviruses to support production of virus-like particles and viral infectivity. HERV-K113 has full-length open reading frames for all viral proteins, while HERV-K101 has a full-length gag open reading frame and is expressed in human male germ cell tumors. The Gag of HERV-K101 allowed production of viral particles and infectivity, although at lower levels than observed with a consensus sequence Gag. Thus, including HERV-K109, at least two HERV-K proviruses in human genome today have functional Gag proteins. In contrast, HERV-K113 Gag supported only very low levels of particle production, and no infectivity was detectable due to a single amino acid substitution (I516M) near the extreme C terminus of the CA protein within Gag. The sequence of this portion of HERV-K CA showed similarities to that of human immunodeficiency virus type 1 and other primate immunodeficiency viruses. The extreme C terminus of CA may be a general determinant of retrovirus particle production. In addition, precise mapping of the defects in HERV-K proviruses as was done here identifies the key polymorphisms that need to be analyzed to assess the possible existence of infectious HERV-K alleles within the human population.
Asunto(s)
Retrovirus Endógenos/fisiología , Productos del Gen gag/fisiología , Mutación Missense , Provirus/fisiología , Replicación Viral , Sustitución de Aminoácidos/genética , Línea Celular Tumoral , Retrovirus Endógenos/genética , Orden Génico , Productos del Gen gag/genética , Prueba de Complementación Genética , Humanos , Provirus/genética , Análisis de Secuencia de ADNRESUMEN
Retroviruses use different strategies to regulate transcription and translation and exploit the cellular machinery involved in these processes. This study shows that the signal peptide of the envelope glycoprotein (Env) of Jaagsiekte sheep retrovirus (JSRV) plays a major role in posttranscriptional viral gene expression. Expression of the JSRV Env in trans increases viral particle production by mechanisms dependent on (i) its leader sequence, (ii) an intact signal peptide cleavage site, (iii) a cis-acting RNA-responsive element located in the viral genome, (iv) Crm1, and (v) B23. The signal peptide of the JSRV Env (JSE-SP) is 80 amino acid residues in length and contains putative nuclear localization and export signals, in addition to an arginine-rich RNA binding motif. JSE-SP localizes both in the endoplasmic reticulum and in the nucleus, where it colocalizes with nucleolar markers. JSE-SP is a multifunctional protein, as it moderately enhances nuclear export of unspliced viral mRNA and considerably increases viral particle release by favoring a posttranslational step of the replication cycle.
Asunto(s)
Regulación Viral de la Expresión Génica/genética , Procesamiento Proteico-Postraduccional/genética , Señales de Clasificación de Proteína/genética , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Nucléolo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Genoma Viral/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Retrovirus Ovino Jaagsiekte/genética , Retrovirus Ovino Jaagsiekte/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Virión/metabolismo , Proteína Exportina 1RESUMEN
Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies.
Asunto(s)
Genoma Viral , Genética Inversa/métodos , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , Células A549 , Humanos , Fiebre por Flebótomos/virología , Regiones Promotoras Genéticas , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/clasificación , Proteínas Virales/genéticaRESUMEN
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5-7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (approximately 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.
Asunto(s)
Evolución Biológica , Retrovirus Endógenos/genética , Interacciones Huésped-Parásitos/genética , Provirus/genética , Ovinos/virología , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Cromosomas Artificiales Bacterianos , Clonación Molecular , Genómica , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Retroviridae/genética , Ovinos/genética , Transfección , Integración ViralRESUMEN
The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.