Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7843): 536-541, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33462504

RESUMEN

Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron-electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases1-4. Although some phases have been shown to have a non-zero Chern number5,6, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations7,8. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron-hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases.

2.
Nature ; 583(7816): 379-384, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669697

RESUMEN

Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1 degrees, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic and topological phases1-6. Correlated insulators and superconductivity have been previously observed only for angles within 0.1 degree of the magic angle and occur in adjacent or overlapping electron-density ranges; nevertheless, the origins of these states and the relation between them remain unclear, owing to their sensitivity to microscopic details. Beyond twist angle and strain, the dependence of the TBG phase diagram on the alignment4,6 and thickness of the insulating hexagonal boron nitride (hBN)7,8 used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten diselenide (WSe2) monolayer between the hBN and the TBG stabilizes superconductivity at twist angles much smaller than the magic angle. For the smallest twist angle of 0.79 degrees, superconductivity is still observed despite the TBG exhibiting metallic behaviour across the whole range of electron densities. Finite-magnetic-field measurements further reveal weak antilocalization signatures as well as breaking of fourfold spin-valley symmetry, consistent with spin-orbit coupling induced in the TBG via its proximity to WSe2. Our results constrain theoretical explanations for the emergence of superconductivity in TBG and open up avenues towards engineering quantum phases in moiré systems.

3.
Nanotechnology ; 35(34)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38815559

RESUMEN

The rational design of highly active and low-cost electrode material is very promising for energy storage applications. The development of supercapacitors with high energy/power density is an imperative and challenging research objective. Herein, we report a highly facile synthesis approach for developing unique nano-porous hybrid NiCuMn oxyhydroxide architecture with remarkable electrochemical energy storage characteristics. The process involves dealloying of Ni15Cu15Mn70alloy in an oxygen rich environment, resulting in a uniform 3-dimensional flower like morphology. The dealloyed electrode demonstrates ultra-high specific capacitance of 4110 F cm-3at a high current density of 20 mA cm-2. A symmetric device exhibits a high volumetric capacitance of 365 F cm-3at a current density of 10 mA cm-2with a large potential window of 1.7 V. Even at very high-power density of 850 W l-1, the device exhibits a high energy density of 146 Wh l-1along with remarkable cyclic stability of 95.4% after 10 000 cycles. The superior performance of nano-porous hybrid NiCuMn oxyhydroxide architecture was attributed to its unique microstructure that provides high surface area, and marginal internal resistance ensuring rapid charge transport.

4.
Nano Lett ; 23(10): 4136-4141, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162008

RESUMEN

Due to its exceptional electronic and thermal properties, graphene is a key material for bolometry, calorimetry, and photon detection. However, despite graphene's relatively simple electronic structure, the physical processes responsible for the heat transport from the electrons to the lattice are experimentally still elusive. Here, we measure the thermal response of low-disorder graphene encapsulated in hexagonal boron nitride by integrating it within a multiterminal superconducting microwave resonator. The device geometry allows us to simultaneously apply Joule heat power to the graphene flake while performing calibrated readout of the electron temperature. We probe the thermalization rates of both electrons and holes with high precision and observe a thermalization scaling exponent not consistent with cooling through the graphene bulk and argue that instead it can be attributed to processes at the graphene-aluminum interface. Our technique provides new insights into the thermalization pathways essential for the next-generation graphene thermal detectors.

5.
Sci Technol Adv Mater ; 15(3): 035011, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27877687

RESUMEN

We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 µm to 5 µm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

6.
ACS Appl Mater Interfaces ; 15(4): 5086-5098, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669233

RESUMEN

High-performance energy storage devices (HPEDs) play a critical role in the realization of clean energy and thus enable the overarching pursuit of nonpolluting, green technologies. Supercapacitors are one class of such lucrative HPEDs; however, a serious limiting factor of supercapacitor technology is its sub-par energy density. This report presents hitherto unchartered pathway of physical deformation, chemical dealloying, and microstructure engineering to produce ultrahigh-capacitance, energy-dense NiMn alloy electrodes. The activated electrode delivered an ultrahigh specific-capacitance of 2700 F/cm3 at 0.5 A/cm3. The symmetric device showcased an excellent energy density of 96.94 Wh/L and a remarkable cycle life of 95% retention after 10,000 cycles. Transmission electron microscopy and atom probe tomography studies revealed the evolution of a unique hierarchical microstructure comprising fine Ni/NiMnO3 nanoligaments within MnO2-rich nanoflakes. Theoretical analysis using density functional theory showed semimetallic nature of the nanoscaled oxygen-vacancy-rich NiMnO3 structure, highlighting enhanced carrier concentration and electronic conductivity of the active region. Furthermore, the geometrical model of NiMnO3 crystals revealed relatively large voids, likely providing channels for the ion intercalation/de-intercalation. The current processing approach is highly adaptable and can be applied to a wide range of material systems for designing highly efficient electrodes for energy-storage devices.

7.
J Biomed Mater Res A ; 110(7): 1314-1328, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35188338

RESUMEN

Micro/nano scale surface modifications of titanium based orthopedic and cardiovascular implants has shown to augment biocompatibility. However, bacterial infection remains a serious concern for implant failure, aggravated by increasing antibiotic resistance and over usage of antibiotics. Bacteria cell adhesion on implant surface leads to colonization and biofilm formation resulting in morbidity and mortality. Hence, there is a need to develop new implant surfaces with high antibacterial properties. Recent developments have shown that superhydrophobic surfaces prevent protein and bacteria cell adhesion. In this study, a thermochemical treatment was used modify the surface properties for high efficacy antibacterial activity on titanium surface. The modification led to a micro-nano surface topography and upon modification with polyethylene glycol (PEG) and silane the surfaces were superhydrophilic and superhydrophobic, respectively. The modified surfaces were characterized for morphology, wettability, chemistry, corrosion resistance and surface charge. The antibacterial capability was characterized with Staphylococcus aureus and Escherichia coli by evaluating the bacteria cell inhibition, adhesion kinetics, and biofilm formation. The results indicated that the superhydrophobic micro-nano structured titanium surface reduced bacteria cell adhesion significantly (>90%) and prevented biofilm formation compared to the unmodified titanium surface after 24 h of incubation.


Asunto(s)
Antibacterianos , Titanio , Antibacterianos/química , Antibacterianos/farmacología , Adhesión Bacteriana , Escherichia coli , Staphylococcus aureus , Propiedades de Superficie , Titanio/química , Titanio/farmacología , Humectabilidad
8.
ACS Omega ; 5(38): 24558-24566, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015473

RESUMEN

Thermal spray coatings (TSCs) are widely utilized for limiting degradation of structural components. However, the performance of TSCs is significantly impaired by its inherent non-homogeneous microstructure, comprising of splat boundaries, porosities, secondary phase-formation, and elemental segregation. Herein, we report a simplistic approach for significantly enhancing the corrosion resistance of TSCs. Ni-Cr-5Al2O3 coatings were deposited on stainless steel using high-velocity oxy-fuel technique. The microstructure of as-sprayed coating showed significant inhomogeneities in the form of isolated splats and elemental segregation. The microstructure of developed coatings was modified using a novel processing technique, known as stationary friction processing (SFP). The SFP treatment resulted in complete refinement of coating microstructure with elimination of splat boundaries and pores along with elemental homogenization. The corrosion behavior of as-sprayed and SFP treated coating was evaluated in 3.5% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy. The SFP treatment reduced the corrosion rate of as-sprayed coating by an order of magnitude. Long-time immersion studies showed continuously decreasing impedance of the as-sprayed coating due to the penetration of the electrolyte along the splat boundaries. In contrast, impedance for the SFP treated coating increased with the immersion time due to the removal of all microstructural defects.

9.
ACS Appl Bio Mater ; 3(2): 1233-1244, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35019324

RESUMEN

The leaching out of toxic elements from metallic bioimplants has serious repercussions, including allergies, peripheral neuritis, cancer, and Alzheimer's disease, leading to revision or replacement surgeries. The development of advanced structural materials with excellent biocompatibility and superior corrosion resistance in the physiological environment holds great significance. High entropy alloys (HEAs) with a huge compositional design space and outstanding mechanical and functional properties can be promising for bioimplant applications. However, microstructural heterogeneity arising from elemental segregation in these multiprinciple alloy systems is the Achilles heel in the development of next-generation HEAs. Here, we demonstrate a pathway to homogenize the microstructure of a biocompatible dual-phase HEA, comprising refractory elements, namely, MoNbTaTiZr, through severe surface deformation using stationary friction processing (SFP). The strain and temperature field during processing homogenized the elemental distribution, which was otherwise unresponsive to conventional annealing treatments. Nearly 15 min of the SFP treatment resulted in a significant elemental homogenization across dendritic and interdendritic regions, similar to a week-long annealing treatment at 1275 K. The SFP processed alloy showed a nearly six times higher biocorrosion resistance compared to its as-cast counterpart. X-ray photoelectron spectroscopy was used to investigate the nature of the oxide layer formed on the specimens. Superior corrosion behavior of the processed alloy was attributed to the formation of a stable passive layer with zirconium oxide as the primary constituent and higher hydrophobicity. Biocompatibility studies performed using the human mesenchymal stem cell line, showed higher viability for the processed HEA compared to its as-cast counterpart as well as conventional metallic biomaterials including stainless steel (SS316L) and titanium alloy (Ti6Al4V).

10.
ACS Appl Bio Mater ; 3(12): 8890-8900, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019565

RESUMEN

Bioimplants are susceptible to simultaneous wear and corrosion degradation in the aggressive physiological environment. High entropy alloys with equimolar proportion of constituent elements represent a unique alloy design strategy for developing bioimplants due to their attractive mechanical properties, superior wear, and corrosion resistance. In this study, the tribo-corrosion behavior of an equiatomic MoNbTaTiZr high entropy alloy consisting of all biocompatible elements was evaluated and compared with 304 stainless steel as a benchmark. The high entropy alloy showed a low wear rate and a friction coefficient as well as quick and stable passivation in simulated body fluid. An increase from room temperature to body temperature showed excellent temperature assisted passivity and nobler surface layer of the high entropy alloy, resulting in four times better wear resistance compared to stainless steel. Stem cells and osteoblast cells displayed proliferation and migratory behavior, indicating in vitro biocompatibility. Several filopodia extensions on the cell periphery indicated early osteogenic commitment, and cell adhesion on the high entropy alloy. These results pave the way for utilizing the unique combination of tribo-corrosion resistance, excellent mechanical properties, and biocompatibility of MoNbTaTiZr high entropy alloy to develop bioimplants with improved service life and lower risk of implant induced cytotoxicity in the host body.

11.
Ultrason Sonochem ; 44: 331-339, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680618

RESUMEN

Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA