Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cryobiology ; 68(3): 467-72, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24704519

RESUMEN

Mesenchymal stromal cells (MSCs) show promise in cell-based transplantations and regenerative medicine applications. MSCs from Wharton's jelly (WJ) of umbilical cord can be easily harvested and exhibit greater proliferative activity than bone marrow MSCs. It is important to develop a practical cryopreservation technique to effectively store umbilical cord for potential future applications. Successful cryopreservation would allow access to umbilical cord from the same donor for repeated WJ MSC-based transplantations. For therapeutic applications, one should be able to obtain clinically-relevant quality and quantity of MSCs from cryopreserved tissues. In this study, we optimised a serum-free formulation of 10% dimethyl sulfoxide (DMSO) and 0.2M sucrose for cryopreservation of umbilical cord tissue. Slow freezing and rapid thawing were adopted. MSCs harvested from WJ of cryopreserved umbilical cord could undergo robust expansion, differentiate to mesodermal lineages and express MSC-characteristic surface antigens. The cumulative cell yield, however, was less compared to corresponding fresh cord tissue.


Asunto(s)
Criopreservación/métodos , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Gelatina de Wharton/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Crioprotectores/metabolismo , Dimetilsulfóxido/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Células Madre Mesenquimatosas/metabolismo , Sacarosa/metabolismo
2.
Nat Cell Biol ; 24(6): 981-995, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697781

RESUMEN

Cerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity despite the tremendous upsurge in derivation methods, suggesting inadequate patterning of early neural stem cells (NSCs). Here we show that a short and early Dual SMAD and WNT inhibition course is necessary and sufficient to establish robust and lasting cortical organoid NSC identity, efficiently suppressing non-cortical NSC fates, while other widely used methods are inconsistent in their cortical NSC-specification capacity. Accordingly, this method selectively enriches for outer radial glia NSCs, which cyto-architecturally demarcate well-defined outer sub-ventricular-like regions propagating from superiorly radially organized, apical cortical rosette NSCs. Finally, this method culminates in the emergence of molecularly distinct deep and upper cortical layer neurons, and reliably uncovers cortex-specific microcephaly defects. Thus, a short SMAD and WNT inhibition is critical for establishing a rich cortical cell repertoire that enables mirroring of fundamental molecular and cyto-architectural features of cortical development and meaningful disease modelling.


Asunto(s)
Células-Madre Neurales , Organoides , Diferenciación Celular , Corteza Cerebral , Células Ependimogliales , Humanos , Neurogénesis , Neuronas
3.
Stem Cells Dev ; 24(17): 2065-77, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25923805

RESUMEN

It is the promise of regeneration and therapeutic applications that has sparked an interest in mesenchymal stem cells (MSCs). Following infusion, MSCs migrate to sites of injury or inflammation by virtue of their homing property. To exert optimal clinical benefits, systemically delivered MSCs need to migrate efficiently and in adequate numbers to pathological areas in vivo. However, underlying molecular mechanisms responsible for MSC migration are still not well understood. The Wharton's jelly (WJ) of the umbilical cord is an attractive source of MSCs for stem cell therapy because of its abundant availability and painless collection. In this study, we attempted to identify the role of nonmuscle myosin II (NMII), if any, in the migration of WJ-derived MSCs (WJ-MSCs). Expression of NMII isoforms, NMIIA, and NMIIB was observed both at RNA and protein levels in WJ-MSCs. Inhibition of NMII or its regulator ROCK, by pharmacological inhibitors, resulted in significant reduction in the migration of WJ-MSCs as confirmed by the scratch migration assay and time-lapse microscopy. Next, trying to dissect the role of each NMII isoform in migration of WJ-MSCs, we found that siRNA-mediated downregulation of NMIIA, but not NMIIB expression, led to cells failing to retract their trailing edge and losing cell-cell cohesiveness, while exhibiting a nondirectional migratory pathway. Migration, moreover, is also dependent on optimal affinity adhesion, which would allow rapid attachment and release of cells and, hence, can be influenced by extracellular matrix (ECM) and adhesion molecules. We demonstrated that inhibition of NMII and more specifically NMIIA resulted in increased gene expression of ECM and adhesion molecules, which possibly led to stronger adhesions and, hence, decreased migration. Therefore, these data suggest that NMII acts as a regulator of cell migration and adhesion in WJ-MSCs.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular , Células Madre Mesenquimatosas/citología , Miosina Tipo II/metabolismo , Cordón Umbilical/citología , Gelatina de Wharton/citología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Regeneración/fisiología , Trasplante de Células Madre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA