Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 141(7): 1534-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598165

RESUMEN

Developing vertebrate limbs initiate proximo-distal patterning by interpreting opposing gradients of diffusible signaling molecules. We report two thresholds of proximo-distal signals in the limb bud: a higher threshold that establishes the upper-arm to forearm transition; and a lower one that positions a later transition from forearm to hand. For this last transition to happen, however, the signal environment seems to be insufficient, and we show that a timing mechanism dependent on histone acetylation status is also necessary. Therefore, as a consequence of the time dependence, the lower signaling threshold remains cryptic until the timing mechanism reveals it. We propose that this timing mechanism prevents the distal transition from happening too early, so that the prospective forearm has enough time to expand and form a properly sized segment. Importantly, the gene expression changes provoked by the first transition further regulate proximo-distal signal distribution, thereby coordinating the positioning of the two thresholds, which ensures robustness. This model is compatible with the most recent genetic analyses and underscores the importance of growth during the time-dependent patterning phase, providing a new mechanistic framework for understanding congenital limb defects.


Asunto(s)
Tipificación del Cuerpo/genética , Epigénesis Genética/fisiología , Extremidades/embriología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Difusión , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Péptidos y Proteínas de Señalización Intracelular/química , Ratones , Ratones Transgénicos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/fisiología , Factores de Tiempo
2.
PLoS Comput Biol ; 7(2): e1001071, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347315

RESUMEN

A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis.


Asunto(s)
Esbozos de los Miembros/embriología , Modelos Biológicos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Células Clonales/fisiología , Biología Computacional , Simulación por Computador , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Anatómicos , Morfogénesis/genética , Morfogénesis/fisiología , Organogénesis/genética , Organogénesis/fisiología , Factores de Transcripción/genética
3.
Dev Biol ; 318(2): 303-11, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18452913

RESUMEN

The mammalian spleen has important functions in immunity and haematopoiesis but little is known about the events that occur during its early embryonic development. Here we analyse the origin of the cells that gives rise to the splenic mesenchyme and the process by which the precursors assume their position along the left lateral side of the stomach. We report a highly conserved regulatory element that regulates the Nkx2-5 gene throughout early spleen development. A transgenic mouse line carrying this element driving a reporter gene was used to show that morphogenesis of the spleen initiates bilaterally and posterior to the stomach, before the splenic precursors grow preferentially leftward. In addition the transgenic line was used in an organ culture system to track spleen precursor cells during development. Spleen cells were shown to move from the posterior mesenchyme and track along the left side of the stomach. Removal of tissue from the anterior stomach resulted in splenic cells randomly scattering suggesting a guidance role for the anterior stomach. Using a mouse line carrying a conditional Cre recombinase to mark early precursor cell populations, the spleen was found to derive from posterior mesenchyme distinct from the closely adjacent stomach mesenchyme.


Asunto(s)
Morfogénesis , Bazo/embriología , Animales , Embrión de Mamíferos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/citología , Ratones , Ratones Transgénicos , Bazo/citología , Estómago/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Development ; 134(20): 3713-22, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17715176

RESUMEN

Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.


Asunto(s)
Tipificación del Cuerpo , Linaje de la Célula , Embrión de Mamíferos , Esbozos de los Miembros , Mesodermo , Animales , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Transgénicos , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA