Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922814

RESUMEN

This work proposes a quantile regression neural network based on a novel constrained weighted quantile loss (CWQLoss) and its application to probabilistic short and medium-term electric-load forecasting of special interest for smart grids operations. The method allows any point forecast neural network based on a multivariate multi-output regression model to be expanded to become a quantile regression model. CWQLoss extends the pinball loss to more than one quantile by creating a weighted average for all predictions in the forecast window and across all quantiles. The pinball loss for each quantile is evaluated separately. The proposed method imposes additional constraints on the quantile values and their associated weights. It is shown that these restrictions are important to have a stable and efficient model. Quantile weights are learned end-to-end by gradient descent along with the network weights. The proposed model achieves two objectives: (a) produce probabilistic (quantile and interval) forecasts with an associated probability for the predicted target values. (b) generate point forecasts by adopting the forecast for the median (0.5 quantiles). We provide specific metrics for point and probabilistic forecasts to evaluate the results considering both objectives. A comprehensive comparison is performed between a selection of classic and advanced forecasting models with the proposed quantile forecasting model. We consider different scenarios for the duration of the forecast window (1 h, 1-day, 1-week, and 1-month), with the proposed model achieving the best results in almost all scenarios. Additionally, we show that the proposed method obtains the best results when an additive ensemble neural network is used as the base model. The experimental results are drawn from real loads of a medium-sized city in Spain.

2.
Foods ; 10(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946235

RESUMEN

Potatoes are one of the most demanded products due to their richness in nutrients. However, the lack of attention to external and, especially, internal defects greatly reduces its marketability and makes it prone to a variety of diseases. The present study aims to identify healthy-looking potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared (SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the samples were classified into either healthy or defective class using an ensemble method consisting of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier was assessed using only the selected wavelengths and using all the spectral data. The total correct classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges, respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively. The statistical tests revealed that there are no significant differences between these datasets. Interestingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected wavelengths in the SWIR spectral range.

3.
Heliyon ; 6(5): e03685, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32490222

RESUMEN

Weeds might be defined as destructive plants that grow and compete with agricultural crops in order to achieve water and nutrients. Uniform spray of herbicides is nowadays a common cause in crops poisoning, environment pollution and high cost of herbicide consumption. Site-specific spraying is a possible solution for the problems that occur with uniform spray in fields. For this reason, a machine vision prototype is proposed in this study based on video processing and meta-heuristic classifiers for online identification and classification of Marfona potato plant (Solanum tuberosum) and 4299 samples from five weed plant varieties: Malva neglecta (mallow), Portulaca oleracea (purslane), Chenopodium album L (lamb's quarters), Secale cereale L (rye) and Xanthium strumarium (coklebur). In order to properly train the machine vision system, various videos taken from two Marfona potato fields within a surface of six hectares are used. After extraction of texture features based on the gray level co-occurrence matrix (GLCM), color features, spectral descriptors of texture, moment invariants and shape features, six effective discriminant features were selected: the standard deviation of saturation (S) component in HSV color space, difference of first and seventh moment invariants, mean value of hue component (H) in HSI color space, area to length ratio, average blue-difference chrominance (Cb) component in YCbCr color space and standard deviation of in-phase (I) component in YIQ color space. Classification results show a high accuracy of 98% correct classification rate (CCR) over the test set, being able to properly identify potato plant from previously mentioned five different weed varieties. Finally, the machine vision prototype was tested in field under real conditions and was able to properly detect, segment and classify weed from potato plant at a speed of up to 0.15 m/s.

4.
Foods ; 9(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31972986

RESUMEN

Since different varieties of crops have specific applications, it is therefore important to properly identify each cultivar, in order to avoid fake varieties being sold as genuine, i.e., fraud. Despite that properly trained human experts might accurately identify and classify crop varieties, computer vision systems are needed since conditions such as fatigue, reproducibility, and so on, can influence the expert's judgment and assessment. Chickpea (Cicer arietinum L.) is an important legume at the world-level and has several varieties. Three chickpea varieties with a rather similar visual appearance were studied here: Adel, Arman, and Azad chickpeas. The purpose of this paper is to present a computer vision system for the automatic classification of those chickpea varieties. First, segmentation was performed using an Hue Saturation Intensity (HSI) color space threshold. Next, color and textural (from the gray level co-occurrence matrix, GLCM) properties (features) were extracted from the chickpea sample images. Then, using the hybrid artificial neural network-cultural algorithm (ANN-CA), the sub-optimal combination of the five most effective properties (mean of the RGB color space components, mean of the HSI color space components, entropy of GLCM matrix at 90°, standard deviation of GLCM matrix at 0°, and mean third component in YCbCr color space) were selected as discriminant features. Finally, an ANN-PSO/ACO/HS majority voting (MV) ensemble methodology merging three different classifier outputs, namely the hybrid artificial neural network-particle swarm optimization (ANN-PSO), hybrid artificial neural network-ant colony optimization (ANN-ACO), and hybrid artificial neural network-harmonic search (ANN-HS), was used. Results showed that the ensemble ANN-PSO/ACO/HS-MV classifier approach reached an average classification accuracy of 99.10 ± 0.75% over the test set, after averaging 1000 random iterations.

5.
Plants (Basel) ; 9(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349459

RESUMEN

Site-specific weed management and selective application of herbicides as eco-friendly techniques are still challenging tasks to perform, especially for densely cultivated crops, such as rice. This study is aimed at developing a stereo vision system for distinguishing between rice plants and weeds and further discriminating two types of weeds in a rice field by using artificial neural networks (ANNs) and two metaheuristic algorithms. For this purpose, stereo videos were recorded across the rice field and different channels were extracted and decomposed into the constituent frames. Next, upon pre-processing and segmentation of the frames, green plants were extracted out of the background. For accurate discrimination of the rice and weeds, a total of 302 color, shape, and texture features were identified. Two metaheuristic algorithms, namely particle swarm optimization (PSO) and the bee algorithm (BA), were used to optimize the neural network for selecting the most effective features and classifying different types of weeds, respectively. Comparing the proposed classification method with the K-nearest neighbors (KNN) classifier, it was found that the proposed ANN-BA classifier reached accuracies of 88.74% and 87.96% for right and left channels, respectively, over the test set. Taking into account either the arithmetic or the geometric means as the basis, the accuracies were increased up to 92.02% and 90.7%, respectively, over the test set. On the other hand, the KNN suffered from more cases of misclassification, as compared to the proposed ANN-BA classifier, generating an overall accuracy of 76.62% and 85.59% for the classification of the right and left channel data, respectively, and 85.84% and 84.07% for the arithmetic and geometric mean values, respectively.

6.
IEEE Trans Biomed Eng ; 55(5): 1463-76, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18440892

RESUMEN

An end-to-end system to automate the well-known Tanner--Whitehouse (TW3) clinical procedure to estimate the skeletal age in childhood is proposed. The system comprises the detailed analysis of the two most important bones in TW3: the radius and ulna wrist bones. First, a modified version of an adaptive clustering segmentation algorithm is presented to properly semi-automatically segment the contour of the bones. Second, up to 89 features are defined and extracted from bone contours and gray scale information inside the contour, followed by some well-founded feature selection mathematical criteria, based on the ideas of maximizing the classes' separability. Third, bone age is estimated with the help of a Generalized Softmax Perceptron (GSP) neural network (NN) that, after supervised learning and optimal complexity estimation via the application of the recently developed Posterior Probability Model Selection (PPMS) algorithm, is able to accurately predict the different development stages in both radius and ulna from which and with the help of the TW3 methodology, we are able to conveniently score and estimate the bone age of a patient in years, in what can be understood as a multiple-class (multiple stages) pattern recognition approach with posterior probability estimation. Finally, numerical results are presented to evaluate the system performance in predicting the bone stages and the final patient bone age over a private hand image database, with the help of the pediatricians and the radiologists expert diagnoses.


Asunto(s)
Determinación de la Edad por el Esqueleto/métodos , Envejecimiento , Algoritmos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radio (Anatomía)/diagnóstico por imagen , Cúbito/diagnóstico por imagen , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
IEEE Trans Biomed Eng ; 64(2): 395-407, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28113193

RESUMEN

OBJECTIVE: To design a Computer-aided diagnosis (CAD) system using an optimized methodology over the P3b wave in order to objectively and accurately discriminate between healthy controls (HC) and schizophrenic subjects (SZ). METHODS: We train, test, analyze, and compare various machine learning classification approaches optimized in terms of the correct classification rate (CCR), the degenerated Youden's index (DYI) and the area under the receiver operating curve (AUC). CAD system comprises five stages: electroencephalography (EEG) preprocessing, feature extraction, seven electrode groupings, discriminant feature selection, and binary classification. RESULTS: With two optimal combinations of electrode grouping, filtering, feature selection algorithm, and classification machine, we get either a mean CCR = 93.42%, specificity = 0.9673, sensitivity = 0.8727, DYI = 0.9188, and AUC = 0.9567 (total-15 Hz-J5-MLP), or a mean CCR = 92.23%, specificity = 0.9499, sensitivity = 0.8838, DYI = 0.9162, and AUC = 0.9807 (right hemisphere-35 Hz-J5-SVM), which to our knowledge are higher than those available to date. CONCLUSIONS: We have verified that a more restrictive low-pass filtering achieves higher CCR as compared to others at higher frequencies in the P3b wave. In addition, results validate previous hypothesis about the importance of the parietal-temporal region, associated with memory processing, allowing us to identify powerful {feature,electrode} pairs in the diagnosis of schizophrenia, achieving higher CCR and AUC in classification of both right and left Hemispheres, and parietal-temporal EEG signals, like, for instance, the {PSE, P4} pair (J5 and mutual information feature selection). SIGNIFICANCE: Diagnosis of schizophrenia is made thoroughly by psychiatrists but as any human-based decision that has a subjective component. This CAD system provides the human expert with an objective complimentary measure to help him in diagnosing schizophrenia.


Asunto(s)
Diagnóstico por Computador/métodos , Electroencefalografía/métodos , Esquizofrenia/diagnóstico , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Área Bajo la Curva , Estudios de Casos y Controles , Humanos , Curva ROC , Esquizofrenia/fisiopatología , Adulto Joven
8.
IEEE Trans Neural Netw ; 16(4): 799-809, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16121722

RESUMEN

This paper proposes a novel algorithm to jointly determine the structure and the parameters of a posteriori probability model based on neural networks (NNs). It makes use of well-known ideas of pruning, splitting, and merging neural components and takes advantage of the probabilistic interpretation of these components. The algorithm, so called a posteriori probability model selection (PPMS), is applied to an NN architecture called the generalized softmax perceptron (GSP) whose outputs can be understood as probabilities although results shown can be extended to more general network architectures. Learning rules are derived from the application of the expectation-maximization algorithm to the GSP-PPMS structure. Simulation results show the advantages of the proposed algorithm with respect to other schemes.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico , Diagnóstico por Computador/métodos , Modelos Biológicos , Modelos Estadísticos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Neoplasias de la Mama/clasificación , Análisis por Conglomerados , Simulación por Computador , Metodologías Computacionales , Técnicas de Apoyo para la Decisión , Humanos , Análisis Numérico Asistido por Computador , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA