Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Biodivers ; 21(8): e202401038, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849308

RESUMEN

The investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation. In light of this, the objective of this study was to examine the thermal inactivation, aggregation, and denaturation processes of three papain-like proteases: ficin, bromelain, papain. To achieve this goal, the following experiments were conducted: (1) determination of the quantity of inactivated proteases using enzyme kinetics with BAPNA as a substrate; (2) differential scanning calorimetry (DSC); (3) assessment of protein aggregation using dynamic light scattering (DLS) and spectrophotometric analysis at 280 nm. Our findings suggest that the inactivation of ficin and papain exhibits single decay step which characterized by a rapid decline, then preservation of the same residual activity by enzyme stabilization. Only bromelain shows two steps with different kinetics. The molecular sizes of the active and inactive forms are similar across ficin, bromelain, and papain. Furthermore, the denaturation of these forms occurs at approximately the same rate and is accompanied by protein aggregation.


Asunto(s)
Bromelaínas , Ficaína , Papaína , Desnaturalización Proteica , Papaína/metabolismo , Papaína/química , Desnaturalización Proteica/efectos de los fármacos , Bromelaínas/química , Bromelaínas/metabolismo , Ficaína/química , Ficaína/metabolismo , Cinética , Temperatura , Agregado de Proteínas/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Dispersión Dinámica de Luz
2.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37511006

RESUMEN

This study investigates the features of interactions between cysteine proteases (bromelain, ficin, and papain) and a graft copolymer of carboxymethyl cellulose sodium salt with N-vinylimidazole. The objective is to understand the influence of this interactions on the proteolytic activity and stability of the enzymes. The enzymes were immobilized through complexation with the carrier. The interaction mechanism was examined using Fourier-transform infrared spectroscopy and flexible molecular docking simulations. The findings reveal that the enzymes interact with the functional groups of the carrier via amino acid residues, resulting in the formation of secondary structure elements and enzyme's active sites. These interactions induce modulation of active site of the enzymes, leading to an enhancement in their proteolytic activity. Furthermore, the immobilized enzymes demonstrate superior stability compared to their native counterparts. Notably, during a 21-day incubation period, no protein release from the conjugates was observed. These results suggest that the complexation of the enzymes with the graft copolymer has the potential to improve their performance as biocatalysts, with applications in various fields such as biomedicine, pharmaceutics, and biotechnology.


Asunto(s)
Bromelaínas , Papaína , Papaína/metabolismo , Ficaína/química , Ficaína/metabolismo , Carboximetilcelulosa de Sodio , Simulación del Acoplamiento Molecular , Polímeros , Cloruro de Sodio , Cloruro de Sodio Dietético , Sodio
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003281

RESUMEN

In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.


Asunto(s)
Quitosano , Ficaína , Humanos , Ficaína/farmacología , Clorhexidina/farmacología , Quitosano/farmacología , Streptococcus mutans , Streptococcus gordonii , Biopelículas
4.
Mar Drugs ; 19(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807362

RESUMEN

Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan-1) and specific activity (U mg protein-1), leading to the preservation of more than 90% of the initial total activity (U mL-1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6-7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Carica/enzimología , Quitosano/química , Portadores de Fármacos , Papaína/farmacología , Antibacterianos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Composición de Medicamentos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Peso Molecular , Papaína/aislamiento & purificación , Staphylococcus aureus , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Temperatura
5.
Molecules ; 22(11)2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-29113077

RESUMEN

The Dps protein of Escherichia coli, which combines ferroxidase activity and the ability to bind DNA, is effectively used by bacteria to protect their genomes from damage. Both activities depend on the integrity of this multi-subunit protein, which has an inner cavity for iron oxides; however, the diversity of its oligomeric forms has only been studied fragmentarily. Here, we show that iron ions stabilize the dodecameric form of Dps. This was found by electrophoretic fractionation and size exclusion chromatography, which revealed several oligomers in highly purified protein samples and demonstrated their conversion to dodecamers in the presence of 1 mM Mohr's salt. The transmission electron microscopy data contradicted the assumption that the stabilizing effect is given by the optimal core size formed in the inner cavity of Dps. The charge state of iron ions was evaluated using Mössbauer spectroscopy, which showed the presence of Fe3O4, rather than the expected Fe2O3, in the sample. Assuming that Fe2+ can form additional inter-subunit contacts, we modeled the interaction of FeO and Fe2O3 with Dps, but the binding sites with putative functionality were predicted only for Fe2O3. The question of how the dodecameric form can be stabilized by ferric oxides is discussed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hierro/metabolismo , Sitios de Unión , Compuestos Férricos/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Estabilidad Proteica
6.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891542

RESUMEN

Chitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult. We have developed an environmentally friendly method for producing water-soluble graft copolymers of chitosan and poly (N-vinylpyrrolidone) with high grafting efficiency and a low yield of by-products. By using AFM, SEM, TGA, DSC, and XRD, it has been demonstrated that the products obtained have changed properties compared to the initial chitosan. They possess a smoother surface and lower thermal stability but are sufficient for practical use. The resulting copolymers have a higher viscosity than the original chitosan, making them a promising thickener and stabilizer for food gels. Moreover, the copolymers exhibit an antibacterial effect, suggesting their potential use as a component in smart food packaging.

7.
Polymers (Basel) ; 15(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36771951

RESUMEN

The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and N,N-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates' formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme. This is due to the modulation of the conformation of ficin globule and of the enzyme active site by weak physical interactions involving catalytically valuable amino acids. The results obtained can extend the practical use of ficin in biomedicine and biotechnology.

8.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35956736

RESUMEN

Briefly, 2-(4-Acetamido-2-sulfanilamide) chitosan, which is a chitosan water-soluble derivative, with molecular weights of 200, 350, and 600 kDa, was successfully synthesized. The immobilization of ficin, papain, and bromelain was carried out by complexation with these polymers. The interaction mechanism of 2-(4-acetamido-2-sulfanilamide) chitosan with bromelain, ficin, and papain was studied using FTIR spectroscopy. It was found that the hydroxy, thionyl, and amino groups of 2-(4-acetamido-2-sulfanilamide) chitosan were involved in the complexation process. Molecular docking research showed that all amino acid residues of the active site of papain formed hydrogen bonds with the immobilization matrix, while only two catalytically valuable amino acid residues took part in the H-bond formation for bromelain and ficin. The spectral and in silico data were in good agreement with the catalytic activity evaluation data. Immobilized papain was more active compared to the other immobilized proteases. Moreover, the total and specific proteolytic activity of papain immobilized on the carrier with a molecular weight of 350 kDa were higher compared to the native one due to the hyperactivation. The optimal ratio of protein content (mg × g -1 of carrier), total activity (U × mL-1 of solution), and specific activity (U × mg-1 of protein) was determined for the enzymes immobilized on 2-(4-acetamido-2-sulfanilamide) chitosan with a molecular weight of 350 kDa.

9.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501516

RESUMEN

Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation.

10.
Int J Biol Macromol ; 180: 161-176, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676977

RESUMEN

Bromelain, papain, and ficin are studied the most for meat tenderization, but have limited application due to their short lifetime. The aim of this work is to identify the adsorption mechanisms of these cysteine proteases on chitosan to improve the enzymes' stability. It is known that immobilization can lead to a significant loss of enzyme activity, which we observed during the sorption of bromelain (protease activity compared to soluble enzyme is 49% for medium and 64% for high molecular weight chitosan), papain (34 and 28% respectively) and ficin (69 and 70% respectively). Immobilization on the chitosan matrix leads to a partial destruction of protein helical structure (from 5 to 19%). Using computer modelling, we have shown that the sorption of cysteine proteases on chitosan is carried out by molecule regions located on the border of domains L and R, including active cites of the enzymes, which explains the decrease in their catalytic activity upon immobilization. The immobilization on chitosan does not shift the optimal range of pH (7.5) and temperature values (60 °C for bromelain and papain, 37-60 °C for ficin), but significantly increases the stability of biocatalysts (from 5.8 times for bromelain to 7.6 times for papain).


Asunto(s)
Bromelaínas/química , Bromelaínas/metabolismo , Quitosano/metabolismo , Composición de Medicamentos/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ficaína/química , Ficaína/metabolismo , Papaína/química , Papaína/metabolismo , Adsorción , Ananas/enzimología , Biocatálisis , Biotecnología/métodos , Carica/enzimología , Dominio Catalítico , Estabilidad de Enzimas , Ficus/enzimología , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Estructura Secundaria de Proteína , Temperatura
11.
Int J Biol Macromol ; 164: 4205-4217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916198

RESUMEN

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.9, and ~70% of its specific enzymatic activity. In vitro, the chitosan-immobilized Ficin degraded staphylococcal biofilms, this way increasing the efficacy of antimicrobials against biofilm-embedded bacteria. In vivo, in the presence of Ficin (either soluble or immobilized), the S.aureus-infected skin wound areas in rats reduced twofold after 4 instead of 6 days treatment. Moreover, topical application of the immobilized enzyme resulted in a 3-log reduction of S. aureus cell count on the wound surfaces in 6 days, compared to more than 10 days required to achieve the same effect in control. Additional advantages include smoother reepithelisation, and new tissue formation exhibiting collagen structure characteristics closely reminiscent of those observed in the native tissue. Taken together, our data suggest that both soluble and immobilized Ficin appear beneficial for the treatment of biofilm-associated infections, as well as speeding up wound healing and microbial decontamination.


Asunto(s)
Biopelículas/efectos de los fármacos , Quitosano/química , Enzimas Inmovilizadas , Ficaína/química , Ficaína/farmacología , Cicatrización de Heridas/efectos de los fármacos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Proteolisis , Solubilidad , Staphylococcus aureus/efectos de los fármacos
12.
J Photochem Photobiol B ; 201: 111681, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31704638

RESUMEN

Our research has shown that the degree of photosensitivity of the cysteine proteases can be arranged in the following order: bromelain → ficin → papain. After the UV irradiation with 151 J·m-2 intensity of a bromelain solution, the enzyme activity has increased. No decrease in the catalytic capacity and the change in the size of the molecule was recorded in the 151-6040 J·m-2 range of irradiation intensities. A decrease in the catalytic capacity of ficin and the increase of its globule size occurred after exposure to a radiation of 3020 J·m-2 intensity. The decrease in papain activity was observed at the UV irradiation intensity of 453 J·m-2, and an increase of the papain globule size was detected at 755 J·m-2. Immobilization on chitosan matrix leads to the increase in the stability of heterogeneous biocatalysts with respect to UV irradiation in comparison with free enzymes. The changes in IR spectra of immobilized cysteine proteases practically do not affect the bands due to the protein component of the system: amide I, amide II, amide III. Therefore, it can be postulated that the chitosan matrix acts as photoprotector for immobilized ficin, bromelain and papain. The obtained results can be helpful for development of drugs based on chitosan and cysteine proteases in combination with phototherapy, as well as for choosing their sterilization conditions.


Asunto(s)
Bromelaínas/metabolismo , Ficaína/metabolismo , Papaína/metabolismo , Rayos Ultravioleta , Biocatálisis/efectos de la radiación , Bromelaínas/química , Quitosano/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ficaína/química , Cinética , Papaína/química , Estructura Terciaria de Proteína
13.
Sci Rep ; 7: 46068, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387349

RESUMEN

Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24 hours treatment with Ficin at 10 µg/ml and six-fold at 1000 µg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 µg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications.


Asunto(s)
Biopelículas/efectos de los fármacos , Ficaína/farmacología , Antibacterianos/farmacología , Compuestos de Benzalconio/farmacología , Biopelículas/crecimiento & desarrollo , Ciprofloxacina/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Hidrólisis , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Staphylococcus/efectos de los fármacos , Staphylococcus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA