Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 345: 118785, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611516

RESUMEN

Anaerobic digestion (AD) is a biological process that breaks down organic waste materials, such as food waste (FW) that produces biogas and digestate. The biogas can be utilized as biofuel, and digestate could be applied as fertilizer. However, AD of FW alone has limitations on optimal degradation, digester stability and biogas yield. Co-digestion of FW along with other organic wastes such as animal manure, agricultural residue, sewage sludge and industrial organic waste, has shown substantial improvement in degradation process with increased biogas yield. The inadequacies in FW for optimum AD, like low carbon-to-nitrogen ratio (C/N ratio), lack of trace elements and irregular particle sizes, can be nullified by adding appropriate co-digestion conjugates. This review aims to describe the characteristic inadequacies of FW and examines the effect on mesophilic co-digestion of FW with animal manure, waste sludge and agricultural wastes for biogas production optimization. A critical review on the impact of pretreatment and co-digestion to enrich the methane (CH4) content in biogas has been performed. The review also examines the microbial community shift due to co-digestion, which is critical for the stability of an anaerobic digester. Finally, it discusses the prospects and challenges for the widespread application of the co-digestion technique as an effective organic waste management practice.


Asunto(s)
Eliminación de Residuos , Animales , Anaerobiosis , Aguas del Alcantarillado , Alimentos , Biocombustibles , Estiércol , Reactores Biológicos , Metano , Residuos Industriales , Digestión
2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668206

RESUMEN

Nano-electrochemical materials and devices are at the frontier of research and development, advancing electrochemistry and its applications in energy storage, sensing, electrochemical processing, etc [...].

3.
Sci Total Environ ; 886: 163985, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37160181

RESUMEN

The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.


Asunto(s)
Biocombustibles , Carbón Orgánico , Humanos , Anaerobiosis , Dióxido de Carbono , Reactores Biológicos , Metano
4.
Sci Total Environ ; 868: 161656, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36669668

RESUMEN

Anaerobic digestion (AD) can be used as a stand-alone process or integrated as part of a larger biorefining process to produce biofuels, biochemicals and fertiliser, and has the potential to play a central role in the emerging circular bioeconomy (CBE). Agricultural residues, such as animal slurry, straw, and grass silage, represent an important resource and have a huge potential to boost biogas and methane yields. Under the CBE concept, there is a need to assess the long-term impact and investigate the potential accumulation of specific unwanted substances. Thus, a comprehensive literature review to summarise the benefits and environmental impacts of using agricultural residues for AD is needed. This review analyses the benefits and potential adverse effects related to developing biogas-centred CBE. The identified potential risks/challenges for developing biogas CBE include GHG emission, nutrient management, pollutants, etc. In general, the environmental risks are highly dependent on the input feedstocks and resulting digestate. Integrated treatment processes should be developed as these could both minimise risks and improve the economic perspective.


Asunto(s)
Agricultura , Biocombustibles , Animales , Anaerobiosis , Ambiente , Poaceae , Metano
5.
Chemosphere ; 291(Pt 1): 132843, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34767847

RESUMEN

Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.


Asunto(s)
Biocombustibles , Dióxido de Carbono , Reactores Biológicos , Dióxido de Carbono/análisis , Hidrógeno , Metano
6.
RSC Adv ; 11(17): 9921-9932, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35423508

RESUMEN

Microbial electrosynthesis (MES) is an innovative technology for electricity driven microbial reduction of carbon dioxide (CO2) to useful multi-carbon compounds. This study assesses the cradle-to-gate environmental burdens associated with acetic acid (AA) production via MES using graphene functionalized carbon felt cathode. The analysis shows that, though the environmental impact for the production of the functionalized cathode is substantially higher when compared to carbon felt with no modification, the improved productivity of the process helps in reducing the overall impact. It is also shown that, while energy used for extraction of AA is the key environmental hotspot, ion-exchange membrane and reactor medium (catholyte & anolyte) are other important contributors. A sensitivity analysis, describing four different scenarios, considering either continuous or fed-batch operation, is also described. Results show that even if MES productivity can be theoretically increased to match the highest space time yield reported for acetogenic bacteria in a continuous gas fermenter (148 g L-1 d-1), the environmental impact of AA produced using MES systems would still be significantly higher than that produced using a fossil-based process. Use of fed-batch operation and renewable (solar) energy sources do help in reducing the impact, however, the low production rates and overall high energy requirement makes large-scale implementation of such systems impractical. The analysis suggests a minimum threshold production rate of 4100 g m-2 d-1, that needs to be achieved, before MES could be seen as a sustainable alternative to fossil-based AA production.

7.
Bioresour Technol ; 333: 125183, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33895671

RESUMEN

Syngas from gasification of waste biomass is a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can be utilized for the synthesis of biofuels such as methane (CH4). The aim of the study research work was to demonstrate how syngas could be methanated and upgraded to natural gas quality (biomethane) in a fed-batch trickle-bed reactor system using either manure - (AD-M) or sludge-based (AD-WW) inoculum as microbial basis. The methanated syngas had a high concentration of CO2 and did not fulfil the criteria for natural gas quality biomethane. Further upgrading of syngas to biomethane could be achieved simultaneously in the same reactors by addition of exogenous H2, resulting in CH4 concentrations up to 91.0 ± 3.5% (AD-WW) and 95.3 ± 1.0% (AD-M). Microbial analysis indicated that the communities differed between AD-M and AD-WW demonstrating functional redundancy among the microbial communities of different inocula.


Asunto(s)
Biocombustibles , Metano , Reactores Biológicos , Dióxido de Carbono/análisis , Hidrógeno , Aguas del Alcantarillado
8.
Waste Manag ; 87: 295-300, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31109529

RESUMEN

Biogas technology is one of the widely applied anaerobic digestion approaches to harvest methane from different wastes. Recently, methane loss from biogas plants and its environmental and economic consequences have been underlined, but not thoroughly researched. In this investigation, process related CH4 loss from nine different commercially operating biogas upgrading plants such as water scrubber, amine, and membrane-based plants was examined. The result of the measurements showed an average of 0.81% methane loss with respect to supplied methane to the upgrading plants. A methane loss up to 1.97% was detected in water scrubber methane upgrading technology and up to 0.56% loss from membrane technology, while 0.04% methane loss was detected in amine based upgrading, thus the water scrubber has shown the most detrimental effect as regards methane loss. The regenerative thermal oxidizer was further applied to reduce CH4 emission by 99.5% of the amount of CH4 in the waste gas from the upgrading unit, which ensures the sustainable process of biogas production.


Asunto(s)
Biocombustibles , Metano , Reactores Biológicos , Tecnología
9.
Bioelectrochemistry ; 128: 83-93, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30959398

RESUMEN

Microbial electrosynthesis is a bioprocess where microbes reduce CO2 into multicarbon chemicals with electrons derived from the cathode of a bioelectrochemical reactor. Developing a highly productive microbial electrosynthesis reactor requires excellent electrical connection between the electrochemical setup, the cathode, and the microbes. Copper is a highly conductive cathode material widely employed in electrochemical apparatuses. However, the antimicrobial properties of copper limit its usage for bioelectrochemistry. Here, biocompatible reduced graphene oxide coated on copper foam is synthesized as a cathode material for the microbial electrosynthesis of acetate from CO2. Dense and electroactive Sporomusa ovata biofilms form on the surface of reduced graphene oxide-coated copper foam electrodes while only scattered and damaged cells cover uncoated copper electrodes. Besides the formation of metabolically-active biofilms, acetate production rate from CO2 is 21.3 and 43.5-fold higher with this novel composite cathode compared with an uncoated copper foam cathode and a reversed cathode made of reduced graphene oxide foam coated with copper, respectively. The results demonstrate that reduced graphene oxide can be employed as a biocompatible and conductive buffer between microbes and bactericidal electrode materials with excellent electrochemical property to enable highly performant microbial electrosynthesis.


Asunto(s)
Acetatos/química , Fuentes de Energía Bioeléctrica , Reactores Biológicos , Dióxido de Carbono/química , Cobre/química , Técnicas Electroquímicas/instrumentación , Electrodos , Grafito/química , Veillonellaceae/metabolismo , Materiales Biocompatibles , Biopelículas , Oxidación-Reducción , Veillonellaceae/crecimiento & desarrollo
10.
Bioresour Technol ; 264: 359-369, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29908874

RESUMEN

Biogas upgrading technologies have received widespread attention recently and are researched extensively. Microbial biogas upgrading (biomethanation) relies on the microbial performance in enriched H2 and CO2 environments. In this review, recent developments and applications of CH4 enrichment in microbial methanation processes are systematically reviewed. During biological methanation, either H2 can be injected directly inside the anaerobic digester to enrich CH4 by a consortium of mixed microbial species or H2 can be injected into a separate bioreactor, where CO2 contained in biogas is coupled with H2 and converted to CH4, or a combination hereof. The available microbial technologies based on hydrogen-mediated CH4 enrichment, in particular ex-situ, in-situ and bioelectrochemical, are compared and discussed. Moreover, gas-liquid mass transfer limitations, and dynamics of bacteria-archaea interactions shift after H2 injection are thoroughly discussed. Finally, the summary of existing demonstration, pilot plants and commercial CH4 enrichment plants based on microbial biomethanation are critically reviewed.


Asunto(s)
Biocombustibles , Reactores Biológicos , Archaea/metabolismo , Hidrógeno , Metano
11.
Bioresour Technol ; 233: 184-190, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28279911

RESUMEN

Sporomusa ovata DSM-2662 produces high rate of acetate during microbial electrosynthesis (MES) by reducing CO2 with electrons coming from a cathode. Here, we investigated other Sporomusa for MES with cathode potential set at -690mVvsSHE to establish if this capacity is conserved among this genus and to identify more performant strains. S. ovata DSM-2663 produced acetate 1.8-fold faster than S. ovata DSM-2662. On the contrary, S. ovata DSM-3300 was 2.7-fold slower whereas Sporomusa aerivorans had no MES activity. These results indicate that MES performance varies among Sporomusa. During MES, electron transfer from cathode to microbes often occurs via H2. To establish if efficient coupling between H2 oxidation and CO2 reduction may explain why specific acetogens are more productive MES catalysts, the metabolisms of the investigated Sporomusa were characterized under H2:CO2. Results suggest that other phenotypic traits besides the capacity to oxidize H2 efficiently are involved.


Asunto(s)
Dióxido de Carbono/metabolismo , Veillonellaceae , Acetatos/metabolismo , Electrodos , Oxidación-Reducción
12.
Sci Rep ; 7(1): 9107, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831188

RESUMEN

During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m-2 d-1 with RGO paper cathodes poised at -690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m-2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2.

13.
Chem Commun (Camb) ; 49(58): 6495-7, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23764873

RESUMEN

Sulfate-reducing bacteria (SRB) developed biocathodes efficient for reduction of acetic and butyric acids to alcohols and acetone via direct electron transfer reaching current densities of 160-210 A m(-2).


Asunto(s)
Acetatos/metabolismo , Acetona/metabolismo , Alcoholes/metabolismo , Bacterias/metabolismo , Butiratos/metabolismo , Biocatálisis , Técnicas Electroquímicas , Transporte de Electrón , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA