Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761097

RESUMEN

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.

2.
Microb Cell Fact ; 23(1): 83, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486280

RESUMEN

BACKGROUND: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity. RESULTS: We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3, and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3, at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3- to CO2. The highest RuBisCO activity of 2.13 nmol of NAD+/ µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2. Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited  ~ 3.4-fold slower reaction rate (0.37 min-1) than the biochemical assay when using 5% CO2. We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation. CONCLUSIONS: Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Oxidación-Reducción , Bioensayo , Carbono , Fotosíntesis
3.
Physiol Plant ; 176(2): e14256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38531421

RESUMEN

The breeding of low phytic acid (LPA) crops is widely considered an effective strategy to improve crop nutrition, but the LPA crops usually have inferior seed germination performance. To clarify the reason for the suboptimal seed performance of LPA rice, this study investigated the impact of reduced seed phytic acid (InsP6) content in rice ins(3)P synthase1 (EC 5.5.1.4, RINO1), one of the key targets for engineering LPA rice, knockouton cellular differentiation in seed embryos and its relation to myo-inositol metabolism and auxin signalling during embryogenesis. The results indicated that the homozygotes of RINO1 knockout could initiate differentiation at the early stage of embryogenesis but failed to form normal differentiation of plumule and radicle primordia. The loss of RINO1 function disrupted vesicle trafficking and auxin signalling due to the significantly lowered phosphatidylinositides (PIs) concentration in seed embryos, thereby leading to the defects of seed embryos without the recognizable differentiation of shoot apex meristem (SAM) and radicle apex meristem (RAM) for the homozygotes of RINO1 knockout. The abnormal embryo phenotype of RINO1 homozygotes was partially rescued by exogenous spraying of inositol and indole-3-acetic acid (IAA) in rice panicle. Thus, RINO1 is crucial for both seed InsP6 biosynthesis and embryonic development. The lower phosphatidylinositol (4,5)-bisphosphate (PI (4,5) P2) concentration and the disorder auxin distribution induced by insufficient inositol supply in seed embryos were among the regulatory switch steps leading to aberrant embryogenesis and failure of seed germination in RINO1 knockout.


Asunto(s)
Inositol , Oryza , Inositol/metabolismo , Ácido Fítico/metabolismo , Oryza/genética , Semillas , Ácidos Indolacéticos/metabolismo
4.
Mol Biol Rep ; 51(1): 191, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270743

RESUMEN

BACKGROUND: Epilepsy is a common neurological disease but around 30% of patients fail to respond to antiepileptic drug (AED) treatment. Genetic variation of the ATP-binding cassette subfamily B, member 1 (ABCB1) gene, a drug efflux transporter may infer treatment resistance by decreasing gastrointestinal absorption and preventing AED entry into the brain. This study examined the impact of ABCB1 genetic variants on carbamazepine responsiveness. MATERIALS AND METHODS: Genomic DNA was extracted from whole blood of 104 epileptic patients. Genotyping of 3 ABCB1 variants (c.C3435T, c.G2677T/A and c.C1236T) was undertaken using validated TaqMan allelic discrimination assays. Plasma carbamazepine levels were measured at 3 and 6 months following the initial dose using high-performance liquid chromatography (HPLC) alongside clinical outcomes evaluation. RESULTS: Nonresponse to carbamazepine (CBZ) was associated significantly with the ABCB1 variants c.C3435T, c.G2677T/A, c.C1236T and TTT, TTC haplotypes (P < 0.05). There was no significant association between variants and plasma CBZ level (P > 0.05). CONCLUSIONS: Our results showed that variant alleles of the ABCB1 gene and TTT, TTC haplotypes were significantly associated with CBZ resistance without affecting the plasma level of carbamazepine. The findings of this study may help to predict patient's response to treatment ultimately it will improve the personalized and evidence based treatment choice of patients with epilepsy.


Asunto(s)
Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Carbamazepina/uso terapéutico , Anticonvulsivantes/uso terapéutico , Alelos , Encéfalo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética
5.
Luminescence ; 39(3): e4724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523053

RESUMEN

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Cristalografía por Rayos X , Electrónica
6.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462999

RESUMEN

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Asunto(s)
Preservación de Semen , Semen , Masculino , Ovinos , Animales , Carragenina/farmacología , Glicerol/farmacología , Motilidad Espermática , Espermatozoides , Crioprotectores/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Oveja Doméstica , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Suplementos Dietéticos
7.
J Environ Manage ; 349: 119377, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37897896

RESUMEN

Microplastic accumulation in the soil-plant system can stress plants and affect products quality. Currently, studies on the effect of microplastics on plants are not consistent and underlying molecular mechanisms are yet unknown. Here for the first time, we performed a study to explore the molecular mechanism underlying the growth of soybean plants in soil contaminated with various types of microplastics (PS and HDPE) and arbuscular mycorrhizal fungi (AMF) (presence/absence). Our results revealed that a dose-dependent decline was observed in plant growth, chlorophyll content, and yield of soybean under MPs stress. The addition of MPs resulted in oxidative stress closely related to hydrogen peroxide generation (H2O2), methylglyoxal (MG) levels, lipid peroxidation (MDA), and lipoxygenase (LOX). In contrast, MPs addition enhanced mycorrhizal colonization and dependency relative to control while the rubisco and root activity declined. All the genes (GmHMA13 and GmHMA19) were downregulated in the presence of MPs except GmHMA18 in roots. AMF inoculation alleviated MPs-induced phytotoxic effects on colonization, rubisco activity, root activity and restored the growth of soybean. Under MPs exposure, AMF inoculation induced plant defense system via improved regulation of antioxidant enzymes, ascorbate, glutathione pool, and glyoxalase system. AMF upregulated the genes responsible for metals uptake in soybean under MPs stress. The antioxidant and glyoxalase systems coordinated regulation expressively inhibited the oxidative and carbonyl stress at both MPs types. Hence, AMF inoculation may be considered an effective approach for minimizing MPs toxicity and its adverse effects on growth of soybean grown on MPs-contaminated soils.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Microplásticos , Plásticos , Antioxidantes , Glycine max/genética , Raíces de Plantas , Peróxido de Hidrógeno , Ribulosa-Bifosfato Carboxilasa , Plantas , Suelo
8.
J Environ Manage ; 351: 119616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042071

RESUMEN

Microplastic (MP) contamination poses a substantial threat to agroecosystems, disrupting soil properties, nutrient cycles, and microbial communities and ultimately affecting plant growth and ecosystem resilience. The effects of straw addition on the storage of soil organic carbon (SOC) and greenhouse gas emissions have been extensively explored, but these effects have not been examined in the context of MP contamination. To assess the impacts of legume straw and polyethylene microplastics on SOC fractions and carbon dioxide (CO2) and nitrous oxide (N2O) emissions, 7-month soil incubation experiments were performed. The results revealed that the inclusion of legume straw in soil considerably increased microbial SOC compared to the control. However, straw addition to MP-contaminated soil reduced microbial SOC compared to that in soil containing only straw. In contrast, the addition of straw to MP-contaminated soil elevated (+44%) the SOC mineral relative to the sole application of straw. Intriguingly, straw incorporation into MP-contaminated soil reduced microbial biomass carbon and nitrogen relative to soil containing only straw. Straw addition to MP-contaminated soil enhanced the nitrification activity and reduced the relative expression of AOBamoABC gene compared to sole straw-incorporated soil and the control. Greenhouse gas emissions were also modulated; for instance, straw incorporation into MP-contaminated soil reduced CO2 and N2O emissions by -11% and -46%, compared to straw incorporation alone. The urease and phosphatase activities were decreased (-58% and -12%) in the MP-polluted soil with straw incorporation compared with those in the soil in which only straw was applied. However, invertase and catalase activities were upregulated in the straw-incorporated soil contaminated with MPs. Straw addition in the MP-polluted soil considerably enhanced (+2%) the microbial community structure (indicated by PLFA) compared to the sole straw application. These results provide a comprehensive perspective on the role of legume straw incorporation in addressing MP pollution, showcasing its potential for sustainable agricultural practices in the face of evolving environmental challenges.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Suelo/química , Microplásticos , Plásticos , Dióxido de Carbono/análisis , Carbono , Agricultura/métodos , Óxido Nitroso/análisis , Verduras
9.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757071

RESUMEN

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

10.
Plant Cell Environ ; 46(5): 1453-1471, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36691352

RESUMEN

High temperatures (HT) cause pollen abortion and poor floret fertility in rice, which is closely associated with excessive accumulation of reactive oxygen species (ROS) in the developing anthers. However, the relationships between accumulation of abscisic acid (ABA) and ROS, and their effects on tapetum-specific programmed cell death (PCD) in HT-stressed anthers are poorly characterised. Here, we determined the spatiotemporal changes in ABA and ROS levels, and their relationships with tapetal PCD under HT exposure. Mutants lacking ABA-activated protein kinase 2 (SAPK2) functions and exogenous ABA treatments were used to explore the effects of ABA signalling on the induction of PCD and ROS accumulation during pollen development. HT-induced pollen abortion was tightly associated with ABA accumulation and oxidative stress. The higher ABA level in HT-stressed anthers resulted in the earlier initiation of PCD induction and subsequently abnormal tapetum degeneration by activating ROS accumulation in developing anthers. Interactions between SAPK2 and DEAD-box ATP-dependent RNA helicase elF4A-1 (RH4) were required for ABA-induced ROS generation in developing anthers. The OsSAPK2 knockout mutants showed the impaired PCD responses in the absence of HT. However, the deficiency of SAPK2 functions did not suppress the ABA-mediated ROS generation in HT-stressed anthers.


Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/fisiología , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/genética , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Polen/fisiología , Apoptosis/genética , Respuesta al Choque Térmico , Regulación de la Expresión Génica de las Plantas
11.
Environ Res ; 231(Pt 2): 116147, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187307

RESUMEN

Both the environment and human health have suffered as a result of excessive and irrational pesticide use. The human body is vulnerable to a wide range of illnesses brought on by prolonged exposure to or intake of food contaminated with pesticide residues, including immunological and hormonal abnormalities and the development of certain tumors. Sensors based on nanoparticles stand out from more conventional spectrophotometry analytical methods due to their low detection limits, high sensitivity, and ease of use; that is why the demand for simple, fast, and less expensive sensing methods increases daily and presents myriad uses. Such demands are fulfilled by employing paper-based analytical devices having intrinsic properties. The presented work reports an on-site, easy-to-handle, and disposable paper-based sensing device for performing fast screening along with readout from a smartphone. The fabricated device utilizes luminescent silica quantum dots, immobilized into a paper cellulose matrix, and the resonance energy transfer phenomenon is employed. The silica quantum dots probes were fabricated from citric acid and, by undergoing physical adsorption, were confined on the nitrocellulose substrate in small wax-traced spots. The silica quantum dots were excited by smartphone ultraviolet LED, acting as an energy source and for capturing the image. The obtained LOD is 0.054 µM, and the coefficient of variation is less than 6.1%, comparable to the result obtained by UV-Visible and fluorometric analysis under similar experimental conditions. In addition, high reproducibility (≥9.8%) and high recovery ≥90% were obtained in spiked blood samples. The fabricated sensor sensitively detected pesticides giving a LOD of 2.5 ppm along with the development of yellow color within a short period of 5 min. The sensor functions well when sophisticated instrumentation is not accessible. The presented work shows the potential of the paper strip for the on-site detection of pesticides in biological and environmental samples.


Asunto(s)
Plaguicidas , Puntos Cuánticos , Humanos , Plaguicidas/análisis , Puntos Cuánticos/química , Dióxido de Silicio/química , Reproducibilidad de los Resultados , Luminiscencia
12.
Ann Noninvasive Electrocardiol ; 28(2): e13040, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36606676

RESUMEN

OBJECTIVE: This systematic review aimed to evaluate the performance of echocardiography-based programming in comparison with the intracardiac electrocardiogram (IEGM)-based method for the optimization of cardiac resynchronization therapy (CRT). METHODS: A literature review was conducted using digital databases to systematically identify the studies reporting CRT optimization through echocardiography compared with IEGM. Detailed patient-level study characteristics including the type of study, sample size, therapy, the New York Heart Classification (NYHA) status, lead placement, and other parameters were abstracted. Finally, postprogramming outcomes were extracted for each article. RESULTS: In a total of 11 studies, 919 patients were recruited for the final analysis. Overall, 692 (75.29%) were males. The mean duration of the QRS complex in our study population ranged from 145.2 ± 21.8 ms to 183 ± 19.9 ms. There was an equal improvement in the NYHA class between the two methods while the left ventricular ejection fraction (LVEF) demonstrated an improvement by IEGM. Many studies supported IEGM to increase the 6-minute walk test and left ventricular outflow tract velocity time interval (LVOT VTI) when compared to echocardiography. The mean time for echocardiography-based optimization was 60.15 min while that of IEGM-based optimization was 6.65 min. CONCLUSION: IEGM is an alternative method for CRT optimization in improving the NYHA class, LVEF, and LVOT VTI, and is less time-consuming when compared to the echocardiography-based methods.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Masculino , Humanos , Femenino , Terapia de Resincronización Cardíaca/métodos , Electrocardiografía , Volumen Sistólico , Resultado del Tratamiento , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/terapia , Función Ventricular Izquierda , Ecocardiografía/métodos
13.
Ecotoxicol Environ Saf ; 268: 115699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979353

RESUMEN

This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.


Asunto(s)
Nanopartículas , Oryza , Cadmio/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Plantones
14.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687814

RESUMEN

This paper explores the potential for communication-efficient federated learning (FL) in modern distributed systems. FL is an emerging distributed machine learning technique that allows for the distributed training of a single machine learning model across multiple geographically distributed clients. This paper surveys the various approaches to communication-efficient FL, including model updates, compression techniques, resource management for the edge and cloud, and client selection. We also review the various optimization techniques associated with communication-efficient FL, such as compression schemes and structured updates. Finally, we highlight the current research challenges and discuss the potential future directions for communication-efficient FL.

15.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003357

RESUMEN

Heat-shock proteins (HSPs) serve as molecular chaperones in the RNA interference (RNAi) pathway of eukaryotic organisms. In model organisms, Hsp70 and Hsp90 facilitate the folding and remodeling of the client protein Argonaute (Ago). However, the specific function of HSPs in the RNAi pathway of Plutella xylostella (L.) (Lepidoptera: Plutellidae) remains unknown. In this study, we identified and analyzed the coding sequences of PxHsc70-4 and PxHsp83 (also known as PxHsp90). Both PxHsc70-4 and PxHsp83 exhibited three conserved domains that covered a massive portion of their respective regions. The knockdown or inhibition of PxHsc70-4 and PxHsp83 in vitro resulted in a significant increase in the gene expression of the dsRNA-silenced reporter gene PxmRPS18, leading to a decrease in its RNAi efficiency. Interestingly, the overexpression of PxHsc70-4 and PxHsp83 in DBM, Sf9, and S2 cells resulted in an increase in the bioluminescent activity of dsRNA-silenced luciferase, indicating a decrease in its RNAi efficiency via the overexpression of Hsp70/Hsp90. Furthermore, the inhibition of PxHsc70-4 and PxHsp83 in vivo resulted in a significant increase in the gene expression of PxmRPS18. These findings demonstrated the essential involvement of a specific quantity of Hsc70-4 and Hsp83 in the siRNA pathway in P. xylostella. Our study offers novel insights into the roles played by HSPs in the siRNA pathway in lepidopteran insects.


Asunto(s)
Lepidópteros , Humanos , Animales , Interferencia de ARN , Lepidópteros/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , ARN Interferente Pequeño/genética , ARN Bicatenario/genética
16.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569697

RESUMEN

Piwi proteins play a significant role in germ cell development and the silencing of transposons in animals by associating with small non-coding RNAs known as Piwi-interacting RNAs (piRNAs). While the Piwi gene has been well characterized in various insect species, the role of the Piwi (PxPiwi) gene in the diamondback moth (Plutella xylostella), a globally distributed pest of cruciferous crops, remains unclear. Expression analysis demonstrated the upregulation of PxPiwi in pupae and testes. Furthermore, we generated a PxPiwi-knockout mutant using CRISPR/Cas9 technology, which resulted in a significantly prolonged pupal stage and the failure of pupae to develop into adults. Additionally, the knockdown of PxPiwi, through RNA interference (RNAi), led to a substantial decrease in the oviposition and hatchability of P. xylostella. These findings indicate that PxPiwi is specifically expressed and essential for the development and reproduction of P. xylostella. This is the first report indicating the involvement of the Piwi gene in the development of lepidopteran insects, except for reproduction and germ cell development, which provides a foundation for future investigations into the functions of PxPiwi.


Asunto(s)
Mariposas Nocturnas , Animales , Femenino , Mariposas Nocturnas/fisiología , Reproducción/genética , Oviposición , Larva/metabolismo
17.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110559

RESUMEN

Hydrogen peroxide acts as a byproduct of oxidative metabolism, and oxidative stress caused by its excess amount, causes different types of cancer. Thus, fast and cost-friendly analytical methods need to be developed for H2O2. Ionic liquid (IL)-coated cobalt (Co)-doped cerium oxide (CeO2)/activated carbon (C) nanocomposite has been used to assess the peroxidase-like activity for the colorimetric detection of H2O2. Both activated C and IL have a synergistic effect on the electrical conductivity of the nanocomposites to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The Co-doped CeO2/activated C nanocomposite has been synthesized by the co-precipitation method and characterized by UV-Vis spectrophotometry, FTIR, SEM, EDX, Raman spectroscopy, and XRD. The prepared nanocomposite was functionalized with IL to avoid agglomeration. H2O2 concentration, incubation time, pH, TMB concentration, and quantity of the capped nanocomposite were tuned. The proposed sensing probe gave a limit of detection of 1.3 × 10-8 M, a limit of quantification of 1.4 × 10-8 M, and an R2 of 0.999. The sensor gave a colorimetric response within 2 min at pH 6 at room temperature. The co-existing species did not show any interference during the sensing probe. The proposed sensor showed high sensitivity and selectivity and was used to detect H2O2 in cancer patients' urine samples.


Asunto(s)
Líquidos Iónicos , Nanocompuestos , Humanos , Peroxidasa/metabolismo , Peróxido de Hidrógeno/química , Colorimetría/métodos , Peroxidasas , Nanocompuestos/química , Colorantes
18.
World J Microbiol Biotechnol ; 39(3): 85, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705812

RESUMEN

Microorganisms belonging to root and soil provide a wide range of services and benefits to the plant by promoting plant growth and controlling phytopathogens. This study aimed to isolate endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.) and determine their potential in improving plant growth. A total of nineteen different bacterial morphotypes were isolated from root nodules of chickpea and characterized in vitro for plant growth promotion abilities. All bacterial isolates were able to produce indole acetic acid at varying levels, out of which MCA19 was screened as the most efficient indole acetic acid producer (10.25 µg mL-1). MCA8, MCA9, MCA10, MCA11, MCA16, MCA17 and MCA19 were positive for phosphate solubilization, out of which MCA9 was best phosphate solubilizer (18.8 µg mL-1). All bacterial strains showed varying ability to grow on nitrogen-free media. Hydrogen cyanide, pectinase, and cellulase production ability were also observed in isolates, in which MCA9, MCA12, MCA17 and MCA19 were found best. Based on in vitro testing, five isolates MCA2, MCA9, MCA11, MCA17 and MCA19 were selected for further studies. Bacterial isolates MCA9, MCA11, MCA17 and MCA19 were identified by 16S rRNA gene sequence analysis as Pantoea dispersa while MCA2 as Rhizobium pusense. This is the first report on the existence of Pantoea dispersa in the root nodules of chickpea. In pot experiment, a maximum increase of 30% was recorded in plant dry weight upon the application of MCA19. Under field conditions, bacterial isolates, MCA2, MCA11 and MCA19 significantly enhanced nodulation and yield parameters of chickpea, compared to control. Pantoea dispersa MCA19 displayed the highest plant growth-promoting potential by increasing 38% grain yield. Our results indicate that Pantoea dispersa MCA19 is a promising biofertilizer for future applications.


Asunto(s)
Cicer , Pantoea , ARN Ribosómico 16S/genética , Fosfatos
19.
J Pak Med Assoc ; 73(1): 117-124, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36842019

RESUMEN

The Guillain-Barré syndrome is an autoimmune polyradiculoneuropathy causing symmetrical weakness of limbs. After poliomyelitis, it is the second most common cause of paralysis, with an annual incidence of 0.84-1.91 per 100,000 individuals. The syndrome affects both men and women, showing a male preponderance. Campylobacter jejuni, epstein-barr virus, cytomegalovirus, mycoplasma pneumoniae and haemophilus influenzae are amongst the most common causative agents of Guillain-Barré syndrome. Several immunological and genetic factors have been recognised as the risk factors. Human leukocyte antigen, cluster of differentiation 1, and tumour necrosis factor-alpha alleles are among the frequently investigated loci in Guillain-Barré syndrome. Genome-wide association studies have found no significant association of Guillain-Barré syndrome with common variants. Many vaccines against Campylobacter jejuni infection have been proposed, but there are concerns about the efficacy and safety of these vaccines. So far, there is no approved vaccine against Campylobacter jejuni.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Síndrome de Guillain-Barré , Vacunas , Humanos , Masculino , Femenino , Síndrome de Guillain-Barré/epidemiología , Síndrome de Guillain-Barré/etiología , Síndrome de Guillain-Barré/terapia , Infecciones por Virus de Epstein-Barr/complicaciones , Estudio de Asociación del Genoma Completo , Herpesvirus Humano 4
20.
Inorg Chem ; 61(6): 2813-2823, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35113540

RESUMEN

Stable stimulus-responsive materials are highly desirable due to their widespread potential applications and growing demand in recent decades. Despite the fact that viologen derivatives have long been known as excellent photochromic and electrochromic materials, the development of stable viologen-based multifunctional smart materials with short coloration times remains an exciting topic. To obtain photochromic and electrochromic dual responsive materials, embedding the viologen ligand into a robust metal oxide cluster to increase its stability and sensitivity is an effective strategy. Herein, a viologen-based metal-organic polyhedron (MOP) {[Zr6L3(µ3-O)2(µ2-OH)6Cp6]·8Cl·CH3OH·DMF} [Zr-MOP-1; H2L·2Cl = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium dichloride, and Cp = η5-C5H5] was successfully prepared and characterized. It consists of trinuclear Zr-oxygen secondary building units and exhibits reversible photochromic and electrochromic dual responsive behaviors. As expected, the designed robust viologen-based nanocage with a V2E3 (V = vertex, and E = edge) topology can maintain its stability and rapid photo/electrochromic behaviors with an obvious reversible change in color from purple (brown) to green, mainly due to the enclosed cluster structure and the abundant free viologen radicals that originate from the effective Cl → N and O → N electron transfers. Spectroelectrochemistry and theoretical calculations of this Zr-MOP were also performed to verify the chromic mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA