Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863251

RESUMEN

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Asunto(s)
Epigenómica , Enfermedades del Sistema Inmune/genética , Monocitos/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo , Transcripción Genética , Adulto , Anciano , Empalme Alternativo , Femenino , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/metabolismo , Código de Histonas , Humanos , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Adulto Joven
2.
Cell ; 155(4): 765-77, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209692

RESUMEN

Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Edad de Inicio , Secuencia de Aminoácidos , Animales , Niño , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Obesidad/epidemiología , Obesidad/metabolismo , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Alineación de Secuencia
3.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758253

RESUMEN

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Asunto(s)
Genoma Humano , Enfermedades Raras/genética , Adolescente , Adulto , Niño , Preescolar , Composición Familiar , Femenino , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Reacción en Cadena de la Polimerasa , Enfermedades Raras/diagnóstico , Sensibilidad y Especificidad , Medicina Estatal , Reino Unido , Secuenciación Completa del Genoma , Adulto Joven
5.
Nature ; 546(7658): 370-375, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28489815

RESUMEN

Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.


Asunto(s)
Variación Genética/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Regulación de la Expresión Génica/genética , Genotipo , Humanos , Especificidad de Órganos , Fenotipo , Control de Calidad , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética
6.
Am J Hum Genet ; 103(1): 3-18, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29909963

RESUMEN

Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Neoplasias Primarias Múltiples/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Femenino , Pruebas Genéticas/métodos , Mutación de Línea Germinal/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
7.
J Am Soc Nephrol ; 31(2): 365-373, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919107

RESUMEN

BACKGROUND: Primary membranoproliferative GN, including complement 3 (C3) glomerulopathy, is a rare, untreatable kidney disease characterized by glomerular complement deposition. Complement gene mutations can cause familial C3 glomerulopathy, and studies have reported rare variants in complement genes in nonfamilial primary membranoproliferative GN. METHODS: We analyzed whole-genome sequence data from 165 primary membranoproliferative GN cases and 10,250 individuals without the condition (controls) as part of the National Institutes of Health Research BioResource-Rare Diseases Study. We examined copy number, rare, and common variants. RESULTS: Our analysis included 146 primary membranoproliferative GN cases and 6442 controls who were unrelated and of European ancestry. We observed no significant enrichment of rare variants in candidate genes (genes encoding components of the complement alternative pathway and other genes associated with the related disease atypical hemolytic uremic syndrome; 6.8% in cases versus 5.9% in controls) or exome-wide. However, a significant common variant locus was identified at 6p21.32 (rs35406322) (P=3.29×10-8; odds ratio [OR], 1.93; 95% confidence interval [95% CI], 1.53 to 2.44), overlapping the HLA locus. Imputation of HLA types mapped this signal to a haplotype incorporating DQA1*05:01, DQB1*02:01, and DRB1*03:01 (P=1.21×10-8; OR, 2.19; 95% CI, 1.66 to 2.89). This finding was replicated by analysis of HLA serotypes in 338 individuals with membranoproliferative GN and 15,614 individuals with nonimmune renal failure. CONCLUSIONS: We found that HLA type, but not rare complement gene variation, is associated with primary membranoproliferative GN. These findings challenge the paradigm of complement gene mutations typically causing primary membranoproliferative GN and implicate an underlying autoimmune mechanism in most cases.


Asunto(s)
Complemento C3/inmunología , Glomerulonefritis Membranoproliferativa/genética , Secuenciación Completa del Genoma , Factor Nefrítico del Complemento 3/análisis , Femenino , Glomerulonefritis Membranoproliferativa/etiología , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Masculino , Serogrupo
8.
Blood ; 127(23): 2903-14, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-26912466

RESUMEN

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Pérdida Auditiva/genética , Mutación , Trombocitopenia/genética , Células A549 , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Niño , Femenino , Forminas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Pérdida Auditiva/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Síndrome , Trombocitopenia/complicaciones , Adulto Joven
9.
Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38906141

RESUMEN

BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.

10.
Blood Adv ; 6(7): 2319-2330, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-34581777

RESUMEN

The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWASs) of quantitative measures of platelet function have identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWASs of pathway-specific functional responses to agonism by adenosine 5'-diphosphate, a glycoprotein VI-specific collagen mimetic, and thrombin receptor-agonist peptides, each specific to 1 of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1562 individuals. We identified an association (P = 2.75 × 10-40) between a common intronic variant, rs10886430, in the G protein-coupled receptor kinase 5 gene (GRK5) and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer that is bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and the greater sensitivity of platelets to activate through PAR-1. We show that thrombin-mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homolog Grk5 enhances thrombin-induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G allele of rs10886430 is associated with a greater risk for cardiovascular disease. In summary, by combining the results of pathway-specific GWASs and expression quantitative trait locus studies in humans with the results from platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.


Asunto(s)
Plaquetas , Trombina , Animales , Plaquetas/metabolismo , Estudio de Asociación del Genoma Completo , Ratones , Activación Plaquetaria , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Trombina/farmacología
11.
Arterioscler Thromb Vasc Biol ; 30(11): 2264-76, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20864672

RESUMEN

OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.


Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Enfermedad de la Arteria Coronaria/genética , Metabolismo de los Lípidos/genética , Triglicéridos/genética , Pueblo Asiatico , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Triglicéridos/sangre , Población Blanca
12.
Cell Metab ; 31(6): 1107-1119.e12, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492392

RESUMEN

Obesity is genetically heterogeneous with monogenic and complex polygenic forms. Using exome and targeted sequencing in 2,737 severely obese cases and 6,704 controls, we identified three genes (PHIP, DGKI, and ZMYM4) with an excess burden of very rare predicted deleterious variants in cases. In cells, we found that nuclear PHIP (pleckstrin homology domain interacting protein) directly enhances transcription of pro-opiomelanocortin (POMC), a neuropeptide that suppresses appetite. Obesity-associated PHIP variants repressed POMC transcription. Our demonstration that PHIP is involved in human energy homeostasis through transcriptional regulation of central melanocortin signaling has potential diagnostic and therapeutic implications for patients with obesity and developmental delay. Additionally, we found an excess burden of predicted deleterious variants involving genes nearest to loci from obesity genome-wide association studies. Genes and gene sets influencing obesity with variable penetrance provide compelling evidence for a continuum of causality in the genetic architecture of obesity, and explain some of its missing heritability.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Obesidad Infantil/genética , Proopiomelanocortina/genética , Adulto , Animales , Células Cultivadas , Niño , Chlorocebus aethiops , Exoma , Femenino , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
13.
Lancet ; 371(9611): 483-91, 2008 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-18262040

RESUMEN

BACKGROUND: LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS: We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS: In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION: We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.


Asunto(s)
LDL-Colesterol/sangre , LDL-Colesterol/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , LDL-Colesterol/fisiología , Cromosomas Humanos Par 1/genética , Estudios de Cohortes , Europa (Continente)/epidemiología , Femenino , Variación Genética/genética , Genoma Humano , Humanos , Modelos Lineales , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Población Blanca/genética
14.
Science ; 364(6442)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123110

RESUMEN

Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Herencia Materna , Óvulo/crecimiento & desarrollo , Selección Genética , Femenino , Variación Genética , Humanos
15.
Behav Res Ther ; 123: 103503, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31715324

RESUMEN

BACKGROUND: Anxiety and depression are common, debilitating and costly. These disorders are influenced by multiple risk factors, from genes to psychological vulnerabilities and environmental stressors, but research is hampered by a lack of sufficiently large comprehensive studies. We are recruiting 40,000 individuals with lifetime depression or anxiety and broad assessment of risks to facilitate future research. METHODS: The Genetic Links to Anxiety and Depression (GLAD) Study (www.gladstudy.org.uk) recruits individuals with depression or anxiety into the NIHR Mental Health BioResource. Participants invited to join the study (via media campaigns) provide demographic, environmental and genetic data, and consent for medical record linkage and recontact. RESULTS: Online recruitment was effective; 42,531 participants consented and 27,776 completed the questionnaire by end of July 2019. Participants' questionnaire data identified very high rates of recurrent depression, severe anxiety, and comorbidity. Participants reported high rates of treatment receipt. The age profile of the sample is biased toward young adults, with higher recruitment of females and the more educated, especially at younger ages. DISCUSSION: This paper describes the study methodology and descriptive data for GLAD, which represents a large, recontactable resource that will enable future research into risks, outcomes, and treatment for anxiety and depression.


Asunto(s)
Ansiedad/genética , Depresión/genética , Selección de Paciente , Desarrollo de Programa/métodos , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Internet , Masculino , Persona de Mediana Edad , Fenotipo , Trastornos Fóbicos/genética , Adulto Joven
16.
Sci Rep ; 7(1): 4394, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663568

RESUMEN

Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10-3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Obesidad Mórbida/genética , Obesidad Infantil/genética , Animales , Estudios de Casos y Controles , Cromograninas/química , Cromograninas/genética , Cromograninas/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Mutación , Obesidad Mórbida/diagnóstico , Oportunidad Relativa , Obesidad Infantil/diagnóstico , Linaje , Conformación Proteica , Roedores
17.
Nat Commun ; 8: 16058, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703137

RESUMEN

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Asunto(s)
Plaquetas/fisiología , Elementos de Facilitación Genéticos , Eritroblastos/química , Variación Genética , Megacariocitos/química , Cromatina , Humanos , Regiones Promotoras Genéticas
18.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936507

RESUMEN

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Asunto(s)
Huesos/patología , Hemorragia/genética , Mutación/genética , Mielofibrosis Primaria/genética , Trombocitopenia/genética , Familia-src Quinasas/genética , Animales , Plaquetas/patología , Células COS , Chlorocebus aethiops , Femenino , Hematopoyesis , Hemorragia/complicaciones , Humanos , Masculino , Linaje , Fenotipo , Mielofibrosis Primaria/complicaciones , Trombocitopenia/complicaciones , Transfección , Pez Cebra
19.
Int J Mol Epidemiol Genet ; 2(3): 261-85, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21915365

RESUMEN

Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA