Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 86(7): 1786-1792, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37450763

RESUMEN

Bioassay-guided fractionation of the essential oil of Santalum album led to the identification of α-santalol (1) and ß-santalol (2) as new chemotypes of cannabinoid receptor type II (CB2) ligands with Ki values of 10.49 and 8.19 µM, respectively. Nine structurally new α-santalol derivatives (4a-4h and 5) were synthesized to identify more selective and potent CB2 ligands. Compound 4e with a piperazine structural moiety demonstrated a Ki value of 0.99 µM against CB2 receptor and did not show binding activity against cannabinoid receptor type I (CB1) at 10 µM. Compounds 1, 2, and 4e increased intracellular calcium influx in SH-SY5Y human neuroblastoma cells that were attenuated by CB2 antagonism or inverse agonism, supporting the results that these compounds are CB2 agonists. Molecular docking showed that 1 and 4e had similar binding poses, exhibiting a unique interaction with Thr114 within the CB2 receptor, and that the piperazine structural moiety is required for the binding affinity of 4e. A 200 ns molecular dynamics simulation of CB2 complexed with 4e confirmed the stability of the complex. This structural insight lays a foundation to further design and synthesize more potent and selective α-santalol-based CB2 ligands for drug discovery.


Asunto(s)
Agonismo Inverso de Drogas , Neuroblastoma , Humanos , Simulación del Acoplamiento Molecular , Ligandos , Receptores de Cannabinoides , Piperazinas/farmacología , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1 , Estructura Molecular , Relación Estructura-Actividad
2.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33173010

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Asunto(s)
Antivirales/farmacología , Heparina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Antivirales/metabolismo , Evaluación Preclínica de Medicamentos , Enoxaparina/química , Enoxaparina/metabolismo , Enoxaparina/farmacología , Vectores Genéticos/genética , Células HEK293 , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Concentración 50 Inhibidora , Lentivirus/genética , Estructura Molecular , Peso Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Polisacáridos/farmacología , Unión Proteica , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transducción Genética , Acoplamiento Viral/efectos de los fármacos
3.
Pharm Res ; 39(3): 541-551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35237922

RESUMEN

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.


Asunto(s)
COVID-19 , Heparina , Animales , Anticoagulantes/efectos adversos , Humanos , Ratones , Ratones Endogámicos C57BL , Tiempo de Tromboplastina Parcial
4.
Bioorg Med Chem Lett ; 32: 127720, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259925

RESUMEN

Flavones are valuable scaffolds in medicinal chemistry, especially as they display activity as antioxidants and neuroprotective agents. The need to incorporate a fluorine atom on flavones has driven much of the recent synthetic work in this area. We now report a route for the production of 3-fluorinated derivatives of 3',4',5'-trihydroxyflavone and 3',4',5'-trimethoxyflavone. Biological evaluation of these agents, along with their non-fluorinated counterparts, demonstrate that antioxidant activity may be enhanced whereas neuroprotective activity is conserved. Also, the 3-fluoro-3',4',5'-trihydroxyflavone can act as an NMR probe to detect structural changes during its action as a radical scavenger.


Asunto(s)
Flavonas/síntesis química , Flavonoides/química , Fármacos Neuroprotectores/química , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Flavonas/química , Halogenación , Espectroscopía de Resonancia Magnética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotoxinas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
5.
Epilepsy Behav ; 110: 107152, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32585475

RESUMEN

Current antiepileptic drugs (AEDs) are undesirable for many reasons including the inability to reduce seizures in certain types of epilepsy, such as Dravet syndrome (DS) where in one-third of patients does not respond to current AEDs, and severe adverse effects that are frequently experienced by patients. Epidiolex, a cannabidiol (CBD)-based drug, was recently approved for treatment of DS. While Epidiolex shows great promise in reducing seizures in patients with DS, it is used in conjunction with other AEDs and can cause liver toxicity. To investigate whether other cannabis-derived compounds could also reduce seizures, the antiepileptic effects of CBD, Δ9-tetrahydrocannabinol (THC), cannabidivarin (CBDV), cannabinol (CBN), and linalool (LN) were compared in both a chemically-induced (pentylenetetrazole, PTZ) and a DS (scn1Lab-/-) seizure models. Zebrafish (Danio rerio) that were either wild-type (Tupfel longfin) or scn1Lab-/- (DS) were exposed to CBD, THC, CBDV, CBN, or LN for 24 h from 5 to 6 days postfertilization. Following exposure, total distance traveled was measured in a ViewPoint Zebrabox to determine if these compounds reduced seizure-like activity. Cannabidiol (0.6 and 1 µM) and THC (1 and 4 µM) significantly reduced PTZ-induced total distance moved. At the highest THC concentration, the significant reduction in PTZ-induced behavior was likely the result of sedation as opposed to antiseizure activity. In the DS model, CBD (0.6 µM), THC (1 µM), CBN (0.6 and 1 µM), and LN (4 µM) significantly reduced total distance traveled. Cannabinol was the most effective at reducing total distance relative to controls. In addition to CBD, other cannabis-derived compounds showed promise in reducing seizure-like activity in zebrafish. Specifically, four of the five compounds were effective in the DS model, whereas in the PTZ model, only CBD and THC were, suggesting a divergence in the mode of action among the cannabis constituents.


Asunto(s)
Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Cannabinol/uso terapéutico , Dronabinol/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Proteínas de Pez Cebra/genética , Monoterpenos Acíclicos/uso terapéutico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/uso terapéutico , Cannabis , Relación Dosis-Respuesta a Droga , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Pez Cebra
6.
J Neurochem ; 151(6): 689-702, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31563149

RESUMEN

Insulin-like Growth Factor-1 (IGF-1) has been studied extensively for its ability to promote neuronal growth and excitability. Declining levels of IGF-1 have been correlated with impaired learning and memory as well as an increased risk of neurodegenerative diseases. While neuronal regulation by IGF-1 is well understood, the role of IGF-1 in influencing astrocyte function requires further exploration. Astrocytes regulate many aspects of the brain microenvironment, including controlling glutamate-glutamine cycling, which ultimately supports neuronal metabolism, neurotransmission, and protection from over stimulation. In this study, we examined whether IGF-1 acts through its cognate receptor, IGFR, to alter astrocytic glutamate handling. We utilized both small molecule IGFR inhibitors and Cre-driven genetic approaches to reduce IGFR in vivo and in cultured rodent astrocytes. When IGFR was knocked out of primary astrocytes derived from igfrf/f mice using AAV5-CMV-Cre, significant reductions in glutamate uptake were observed. Similarly, inhibition of IGFR with picropodophyllotoxin for 2 h, as well as 24 h, reduced glutamate uptake in vitro. Mechanistically, short-term inhibition of IGFR resulted in a significant decrease in glutamate transporter availability on the cell surface, as assessed by biotinylation. Long-term inhibition of IGFR led to significant reductions in mRNA expression of glutamate transport machinery, as assessed with qPCR. Reduced glutamate transporter mRNA was also observed in the brains of astrocyte-specific IGFR-deficient mice, three to four months after knock-out was induced with tamoxifen. Interestingly, long-term IGF-1 inhibition also resulted in an increase in adenosine triphosphate-stimulated glutamate release, though no change in adenosine triphosphate-stimulated calcium flux was observed nor were any changes in purinergic receptor protein expression. Together, these data suggest that reduced IGF-1 signaling will favor an accumulation of extrasynaptic glutamate, which may contribute to neurodegeneration in disease states where IGF-1 levels are low. Cover Image for this issue: doi: 10.1111/jnc.14534.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Factor I del Crecimiento Similar a la Insulina/deficiencia , Animales , Encéfalo/metabolismo , Células Cultivadas , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
7.
Molecules ; 24(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699965

RESUMEN

Although 4-O-Methylhonokiol (MH) effects on neuronal and immune cells have been established, it is still unclear whether MH can cause a change in the structure and function of the cardiovascular system. The overarching goal of this study was to evaluate the effects of MH, isolated from Magnolia grandiflora, on the development of the heart and vasculature in a Japanese medaka model in vivo to predict human health risks. We analyzed the toxicity of MH in different life-stages of medaka embryos. MH uptake into medaka embryos was quantified. The LC50 of two different exposure windows (stages 9⁻36 (0⁻6 days post fertilization (dpf)) and 25⁻36 (2⁻6 dpf)) were 5.3 ± 0.1 µM and 9.9 ± 0.2 µM. Survival, deformities, days to hatch, and larval locomotor response were quantified. Wnt 1 was overexpressed in MH-treated embryos indicating deregulation of the Wnt signaling pathway, which was associated with spinal and cardiac ventricle deformities. Overexpression of major proinflammatory mediators and biomarkers of the heart were detected. Our results indicated that the differential sensitivity of MH in the embryos was developmental stage-specific. Furthermore, this study demonstrated that certain molecules can serve as promising markers at the transcriptional and phenotypical levels, responding to absorption of MH in the developing embryo.


Asunto(s)
Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Animales , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Modelos Animales de Enfermedad , Embrión no Mamífero/efectos de los fármacos , Medicina de Hierbas , Inflamación/tratamiento farmacológico , Magnolia/química , Masculino , Oryzias , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
8.
J Biol Chem ; 291(46): 23895-23905, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655914

RESUMEN

Protein tyrosine phosphatase MEG2 (PTP-MEG2) is a unique nonreceptor tyrosine phosphatase associated with transport vesicles, where it facilitates membrane trafficking by dephosphorylation of the N-ethylmaleimide-sensitive fusion factor. In this study, we identify the neurotrophin receptor TrkA as a novel cargo whose transport to the cell surface requires PTP-MEG2 activity. In addition, TrkA is also a novel substrate of PTP-MEG2, which dephosphorylates both Tyr-490 and Tyr-674/Tyr-675 of TrkA. As a result, overexpression of PTP-MEG2 down-regulates NGF/TrkA signaling and blocks neurite outgrowth and differentiation in PC12 cells and cortical neurons.


Asunto(s)
Neuritas/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptor trkA/metabolismo , Transducción de Señal/fisiología , Animales , Ratones , Células PC12 , Transporte de Proteínas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ratas
9.
J Biol Chem ; 288(20): 14599-14611, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23543737

RESUMEN

The extent of calcium/calmodulin-dependent protein kinase II (CaMKII) inactivation in the brain after ischemia correlates with the extent of damage. We have previously shown that a loss of CaMKII activity in neurons is detrimental to neuronal viability by inducing excitotoxic glutamate release. In the current study we extend these findings to show that the ability of astrocytes to buffer extracellular glutamate is reduced when CaMKII is inhibited. Furthermore, CaMKII inhibition in astrocytes is associated with the rapid onset of intracellular calcium oscillations. Surprisingly, this rapid calcium influx is blocked by the N-type calcium channel antagonist, ω-conotoxin. Although the function of N-type calcium channels within astrocytes is controversial, these voltage-gated calcium channels have been linked to calcium-dependent vesicular gliotransmitter release. When extracellular glutamate and ATP levels are measured after CaMKII inhibition within our enriched astrocyte cultures, no alterations in glutamate levels are observed, whereas ATP levels in the extracellular environment significantly increase. Extracellular ATP accumulation associated with CaMKII inhibition contributes both to calcium oscillations within astrocytes and ultimately cortical neuron toxicity. Thus, a loss of CaMKII signaling within astrocytes dysregulates glutamate uptake and supports ATP release, two processes that would compromise neuronal survival after ischemic/excitotoxic insults.


Asunto(s)
Astrocitos/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio Tipo N/metabolismo , Señalización del Calcio/efectos de los fármacos , Comunicación Celular , Supervivencia Celular , Técnicas de Cocultivo , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Neurotoxinas/metabolismo , Ratas , Ratas Sprague-Dawley
10.
Am J Physiol Heart Circ Physiol ; 306(3): H299-308, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24322615

RESUMEN

Moment-to-moment adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling is essential for the maintenance of normal neuronal function. Increased oxidative stress that occurs with aging was shown to impair neurovascular coupling, which likely contributes to a significant age-related decline in higher cortical function, increasing the risk for vascular cognitive impairment. Resveratrol is a polyphenolic compound that exerts significant antiaging protective effects in large vessels, but its effects on the cerebromicrovasculature remain poorly defined. The present study was undertaken to investigate the capacity of resveratrol to improve neurovascular coupling in aging. In aged (24-mo-old) C57BL/6 mice N(ω)-nitro-l-arginine methyl ester-sensitive, nitric oxide-mediated CBF responses to whisker stimulation and to the endothelium-dependent dilator acethylcholine (ACh) were impaired compared with those in young (3-mo-old) mice. Treatment of aged mice with resveratrol rescued neurovascular coupling and ACh-induced responses, which was associated with downregulation of cortical expression of NADPH oxidase and decreased levels of biomarkers of oxidative/nitrative stress (3-nitrotyrosine, 8-isoprostanes). Resveratrol also attenuated age-related increases in reactive oxygen species (ROS) production in cultured cerebromicrovascular endothelial cells (DCF fluorescence, flow cytometry). In conclusion, treatment with resveratrol rescues cortical neurovascular coupling responses to increased neuronal activity in aged mice, likely by restoring cerebromicrovascular endothelial function via downregulation of NADPH oxidase-derived ROS production. Beneficial cerebromicrovascular effects of resveratrol may contribute to its protective effects on cognitive function in aging.


Asunto(s)
Envejecimiento/fisiología , Cerebro/irrigación sanguínea , Endotelio Vascular/efectos de los fármacos , Microcirculación/efectos de los fármacos , Estilbenos/farmacología , Vasodilatación/efectos de los fármacos , Animales , Demencia Vascular/prevención & control , Endotelio Vascular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación/fisiología , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Vasodilatadores/farmacología
11.
Am J Physiol Heart Circ Physiol ; 307(6): H858-68, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25038144

RESUMEN

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.


Asunto(s)
Lesiones Encefálicas/etiología , Células Endoteliales/efectos de la radiación , Hipocampo/irrigación sanguínea , Hipocampo/efectos de la radiación , Microvasos/efectos de la radiación , Neovascularización Fisiológica/efectos de la radiación , Traumatismos por Radiación/etiología , Células Madre/efectos de los fármacos , Irradiación Corporal Total , Animales , Trasplante de Médula Ósea , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Adhesión Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Modelos Animales de Enfermedad , Fraccionamiento de la Dosis de Radiación , Células Endoteliales/patología , Células Endoteliales/trasplante , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/patología , Hipoxia/metabolismo , Hipoxia/patología , Hipoxia/fisiopatología , Mediadores de Inflamación/metabolismo , Interleucina-10/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/patología , Microvasos/fisiopatología , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Traumatismos por Radiación/fisiopatología , Nicho de Células Madre , Células Madre/patología , Factores de Tiempo
12.
J Biol Chem ; 287(11): 8495-506, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22253441

RESUMEN

Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cicloheximida/farmacología , Epilepsia/metabolismo , Epilepsia/patología , Neuronas/patología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
13.
J Biol Chem ; 287(24): 19856-69, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22514276

RESUMEN

The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.


Asunto(s)
Síndrome de Brugada/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Canales de Sodio/metabolismo , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Potenciales de la Membrana/genética , Ratones , Proteínas Musculares/genética , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5 , Fosforilación/genética , Estructura Terciaria de Proteína , Canales de Sodio/genética
14.
bioRxiv ; 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37034764

RESUMEN

Ischemic stroke is a leading cause of death and disability, as therapeutic options for mitigating the long-term deficits precipitated by the event remain limited. Acute administration of the neuroendocrine modulator insulin-like growth factor-1 (IGF-1) attenuates ischemic stroke damage in preclinical models, and clinical studies suggest IGF-1 can reduce the risk of stroke and improve overall outcomes. The cellular mechanism by which IGF-1 exerts this protection is poorly defined, as all cells within the neurovascular unit express the IGF-1 receptor. We hypothesize that the functional regulation of both neurons and astrocytes by IGF-1 is critical in minimizing damage in ischemic stroke. To test this, we utilized inducible astrocyte-specific or neuron-specific transgenic mouse models to selectively reduce IGF-1R in the adult mouse brain prior to photothrombotic stroke. Acute changes in blood brain barrier permeability, microglial activation, systemic inflammation, and biochemical composition of the brain were assessed 3 hours following photothrombosis, and significant protection was observed in mice deficient in neuronal and astrocytic IGF-1R. When the extent of tissue damage and sensorimotor dysfunction was assessed for 3 days following stroke, only the neurological deficit score continued to show improvements, and the extent of improvement was enhanced with additional IGF-1 supplementation. Overall, results indicate that neuronal and astrocytic IGF-1 signaling influences stroke damage but IGF-1 signaling within these individual cell types is not required for minimizing tissue damage or behavioral outcome.

15.
J Physiol ; 590(20): 5123-39, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22826127

RESUMEN

The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals.


Asunto(s)
Tolerancia a Medicamentos/genética , Lidocaína/farmacología , Síndrome de QT Prolongado/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Antiarrítmicos/farmacología , Células HEK293 , Humanos , Técnicas In Vitro , Mutación , Miocitos Cardíacos/fisiología , Ratas , Ratas Sprague-Dawley , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
16.
J Biol Chem ; 286(43): 37778-92, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21832084

RESUMEN

Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Proteínas del Tejido Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Animales , Lesiones Encefálicas/patología , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular , Neuronas/metabolismo , Neuronas/patología , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
17.
Mol Cell Neurosci ; 46(4): 720-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21316454

RESUMEN

Aberrant calcium signaling is a common feature of ischemia and multiple neurodegenerative diseases. While activation of calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key event in calcium signaling, its role in excitotoxicity is controversial. Our findings demonstrate neuroprotection in neuronal cultures treated with the small molecule (KN-93) and peptide (tat-AIP and tat-CN21) inhibitors of CaMKII immediately prior to excitotoxic glutamate/glycine insult. Unlike KN-93 which blocks CaMKII activation, but not constitutively active forms of CaMKII, tat-CN21 and tat-AIP significantly reduced excitotoxicity in cultured neurons when applied post-insult. We observed that the neuroprotective effects of tat-CN21 are greatest when applied before the toxic glutamate challenge and diminish with time, with the neuroprotection associated with CaMKII inhibition diminishing back to control 3h post glutamate insult. Mechanistically, tat-CN21 inhibition of CaMKII resulted in an increase in CaMKII activity and the percentage of soluble αCaMKII observed in neuronal lysates 24h following glutamate stimulation. To address the impact of prolonged CaMKII inhibition prior to excitotoxic insult, neuronal cultures were treated with CaMKII inhibitors overnight and then subjected to a sub-maximal excitotoxic insult. In this model, CaMKII inhibition prior to insult exacerbated neuronal death, suggesting that a loss of CaMKII enhances neuronal vulnerability to glutamate. Although changes in αCaMKII or NR2B protein levels are not responsible for this enhanced glutamate vulnerability, this process is blocked by the protein translation inhibitor cycloheximide. In total, the neuroprotection afforded by CaMKII inhibition can be seen as neuroprotective immediately surrounding the excitotoxic insult, whereas sustained CaMKII inhibition produced by excitotoxicity leads to neuronal death by enhancing neuronal vulnerability to glutamate.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Animales , Bencilaminas/farmacología , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Ácido Glutámico/toxicidad , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/fisiología , Péptidos/genética , Péptidos/metabolismo , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología
18.
Aging (Albany NY) ; 14(13): 5345-5365, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830469

RESUMEN

In the U.S. about half of the HIV-infected individuals are aged 50 and older. In men living with HIV, secondary hypogonadism is common and occurs earlier than in seronegative men, and its prevalence increases with age. While the mechanisms(s) are unknown, the HIV-1 trans-activator of transcription (Tat) protein disrupts neuroendocrine function in mice partly by dysregulating mitochondria and neurosteroidogenesis. We hypothesized that conditional Tat expression in middle-aged male transgenic mice [Tat(+)] would promote age-related comorbidities compared to age-matched controls [Tat(-)]. We expected Tat to alter steroid hormone milieu consistent with behavioral deficits. Middle-aged Tat(+) mice had lower circulating testosterone and progesterone than age-matched controls and greater circulating corticosterone and central allopregnanolone than other groups. Young Tat(+) mice had greater circulating progesterone and estradiol-to-testosterone ratios. Older age or Tat exposure increased anxiety-like behavior (open field; elevated plus-maze), increased cognitive errors (radial arm water maze), and reduced grip strength. Young Tat(+), or middle-aged Tat(-), males had higher mechanical nociceptive thresholds than age-matched counterparts. Steroid levels correlated with behaviors. Thus, Tat may contribute to HIV-accelerated aging.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Cognición , Estradiol , Infecciones por VIH/complicaciones , VIH-1/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Morbilidad , Progesterona , Testosterona , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
19.
ChemMedChem ; 17(7): e202100684, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35043597

RESUMEN

Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Asunto(s)
Receptores Opioides kappa , Receptores Opioides mu , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Animales , Diterpenos de Tipo Clerodano , Ésteres , Masculino , Ratones , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas
20.
medRxiv ; 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35194614

RESUMEN

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 hours, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 hours. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 hours after dosing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA