Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 61(8): e202115173, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34881491

RESUMEN

Employing halenium affinity (HalA) as a guiding tool, the weak nucleophilic character of alkyl ketones was modulated by the templating effect of a tethered 2-tetrahydropyranyl(THP)-protected alcohol towards realizing a bromenium ion initiated spiroketalization cascade. Addition of ethanol aided an early termination of the cascade by scavenging the THP group after the halofunctionalization stage, furnishing monobromospiroketals. Alternatively, exclusion of ethanol from the reaction mixture biased the transient oxocarbenium towards α-deprotonation that precedes a second bromofunctionalization event thus, furnishing dibrominated spiroketals. The regio- and stereoselectivity exploited in the current methodology provides a novel and rapid access to the dibrominated spiroketal motifs exhibited by several natural products.


Asunto(s)
Bromo/química , Furanos/química , Compuestos de Espiro/química , Iones/química , Estructura Molecular , Estereoisomerismo
2.
J Am Chem Soc ; 142(15): 7179-7189, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32202109

RESUMEN

Electrophilic halofunctionalization reactions have undergone a resurgence sparked by recent discoveries in the field of catalytic asymmetric halocyclizations. To build mechanistic understanding of these asymmetric transformations, a toolbox of analytical methods has been deployed, addressing the roles of catalyst, electrophile (halenium donor), and nucleophile in determining rates and stereopreferences. The test reaction, (DHQD)2PHAL-catalyzed chlorocyclization of 4-arylpent-4-enoic acid with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH), is revealed to be first order in catalyst and chlorenium ion donor and zero order in alkenoic acid substrate under synthetically relevant conditions. The simplest interpretation is that rapid substrate-catalyst binding precedes rate-limiting chlorenium attack, controlling the face selectivity of both chlorine attack and lactone closure. ROESY and DFT studies, aided by crystal structures of carboxylic acids bound by the catalyst, point to a plausible resting state of the catalyst-substrate complex predisposed for asymmetric chlorolactonization. As revealed by our earlier labeling studies, these findings suggest modes of binding in the (DHQD)2PHAL chiral pocket that explain the system's remarkable control over rate- and enantioselection-determining events. Though a comprehensive modeling analysis is beyond the scope of the present work, quantum chemical analysis of the fragments' interactions and candidate reaction paths point to a one-step concerted process, with the nucleophile playing a critical role in activating the olefin for concomitant electrophilic attack.


Asunto(s)
Lactonas/química , Catálisis , Estructura Molecular , Estereoisomerismo
3.
J Am Chem Soc ; 138(26): 8114-9, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27284808

RESUMEN

Emerging work on organocatalytic enantioselective halocyclizations naturally draws on conditions where both new bonds must be formed under delicate control, the reaction regime where the concerted nature of the AdE3 mechanism is of greatest importance. Without assistance, many simple alkene substrates react slowly or not at all with conventional halenium donors under synthetically relevant reaction conditions. As demonstrated earlier by Shilov, Cambie, Williams, Fahey, and others, alkenes can undergo a concerted AdE3-type reaction via nucleophile participation, which sets the configuration of the newly created stereocenters at both ends in one step. Herein, we explore the modulation of alkene reactivity and halocyclization rates by nucleophile proximity and basicity, through detailed analyses of starting material spectroscopy, addition stereopreferences, isotope effects, and nucleophile-alkene interactions, all obtained in a context directly relevant to synthesis reaction conditions. The findings build on the prior work by highlighting the reactivity spectrum of halocyclizations from stepwise to concerted, and suggest strategies for design of new reactions. Alkene reactivity is seen to span the range from the often overgeneralized "sophomore textbook" image of stepwise electrophilic attack on the alkene and subsequent nucleophilic bond formation, to the nucleophile-assisted alkene activation (NAAA) cases where electron donation from the nucleophilic addition partner activates the alkene for electrophilic attack. By highlighting the factors that control reactivity across this range, this study suggests opportunities to explain and control stereo-, regio-, and organocatalytic chemistry in this important class of alkene additions.


Asunto(s)
Alquenos/química , Catálisis , Ciclización , Transporte de Electrón
4.
J Am Chem Soc ; 136(38): 13355-62, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25152188

RESUMEN

We introduce a previously unexplored parameter-halenium affinity (HalA)- as a quantitative descriptor of the bond strengths of various functional groups to halenium ions. The HalA scale ranks potential halenium ion acceptors based on their ability to stabilize a "free halenium ion". Alkenes in particular but other Lewis bases as well, such as amines, amides, carbonyls, and ether oxygen atoms, etc., have been classified on the HalA scale. This indirect approach enables a rapid and straightforward prediction of chemoselectivity for systems involved in halofunctionalization reactions that have multiple nucleophilic sites. The influences of subtle electronic and steric variations, as well as the less predictable anchimeric and stereoelectronic effects, are intrinsically accounted for by HalA computations, providing quantitative assessments beyond simple "chemical intuition". This combined theoretical-experimental approach offers an expeditious means of predicting and identifying unprecedented reactions.


Asunto(s)
Alquenos/química , Halógenos/química , Iones/química , Halogenación , Indicadores y Reactivos , Modelos Moleculares , Termodinámica
5.
J Am Chem Soc ; 135(39): 14524-7, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24025085

RESUMEN

We report absolute and relative stereochemistry of addition in enantioselective chlorolactonizations of 4-phenyl-4-pentenoic acid and its related t-butyl ester, catalyzed by (DHQD)2PHAL. Predominant syn addition of the chlorenium and the nucleophile across the olefin is observed. As shown by isotopic labeling, NMR spectroscopy, and derivative studies, the two new stereocenters formed by addition across the double bond are set independently and influenced by different factors. These findings suggest a stepwise process via an intermediate capable of lactone closure with either stereochemistry, in contradistinction to the more familiar scenario in which anti addition is dictated by a bridging chloronium ion intermediate.

6.
Cell Chem Biol ; 30(10): 1211-1222.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37827156

RESUMEN

The small-molecule drug ralimetinib was developed as an inhibitor of the p38α mitogen-activated protein kinase, and it has advanced to phase 2 clinical trials in oncology. Here, we demonstrate that ralimetinib resembles EGFR-targeting drugs in pharmacogenomic profiling experiments and that ralimetinib inhibits EGFR kinase activity in vitro and in cellulo. While ralimetinib sensitivity is unaffected by deletion of the genes encoding p38α and p38ß, its effects are blocked by expression of the EGFR-T790M gatekeeper mutation. Finally, we solved the cocrystal structure of ralimetinib bound to EGFR, providing further evidence that this drug functions as an ATP-competitive EGFR inhibitor. We conclude that, though ralimetinib is >30-fold less potent against EGFR compared to p38α, its ability to inhibit EGFR drives its primary anticancer effects. Our results call into question the value of p38α as an anticancer target, and we describe a multi-modal approach that can be used to uncover a drug's mechanism-of-action.


Asunto(s)
Neoplasias Pulmonares , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Receptores ErbB , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
7.
Cancer Res ; 80(10): 2017-2030, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32193290

RESUMEN

Osimertinib, a mutant-specific third-generation EGFR tyrosine kinase inhibitor, is emerging as the preferred first-line therapy for EGFR-mutant lung cancer, yet resistance inevitably develops in patients. We modeled acquired resistance to osimertinib in transgenic mouse models of EGFRL858R -induced lung adenocarcinoma and found that it is mediated largely through secondary mutations in EGFR-either C797S or L718V/Q. Analysis of circulating free DNA data from patients revealed that L718Q/V mutations almost always occur in the context of an L858R driver mutation. Therapeutic testing in mice revealed that both erlotinib and afatinib caused regression of osimertinib-resistant C797S-containing tumors, whereas only afatinib was effective on L718Q mutant tumors. Combination first-line osimertinib plus erlotinib treatment prevented the emergence of secondary mutations in EGFR. These findings highlight how knowledge of the specific characteristics of resistance mutations is important for determining potential subsequent treatment approaches and suggest strategies to overcome or prevent osimertinib resistance in vivo. SIGNIFICANCE: This study provides insight into the biological and molecular properties of osimertinib resistance EGFR mutations and evaluates therapeutic strategies to overcome resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/2017/F1.large.jpg.


Asunto(s)
Acrilamidas/farmacología , Adenocarcinoma/genética , Compuestos de Anilina/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Adenocarcinoma/tratamiento farmacológico , Afatinib/farmacología , Alelos , Animales , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Persona de Mediana Edad , Mutación
8.
Chem Sci ; 9(11): 2898-2908, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29719676

RESUMEN

Though (DHQD)2PHAL-catalyzed chlorocyclizations of 1,1-disubstituted olefins show useful (and in some cases, reversible) asymmetric induction, stereochemically complete descriptions of these alkene additions have remained largely unknown. Herein, based on a combination of NMR, derivative, isotope labeling, and computational studies, we present detailed stereochemical analyses of chlorocyclizations of nucleophile-tethered 1,1-disubstituted styryl systems. The selectivities of the two asymmetric bond-forming processes, namely electrophilic chlorine attack and nucleophilic ring closure, are thus mapped out independently. Under the established optimal conditions, four related chlorocyclizations were subjected to this analysis. All showed a strong preference for Cl+ delivery from the same face of the alkene. However, depending on reaction conditions and substrate identity (carboxylic acid, amide or carbamate), the internal nucleophiles may close with a strong net preference for either syn or anti addition relative to the Cl atom. Studies of both uncatalyzed and (DHQD)2PHAL-catalyzed processes place new boundary conditions on the role of the catalyst in these reactions.

9.
Org Lett ; 18(16): 3976-9, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27487461

RESUMEN

Utilizing two robust C-C bond-forming reactions, the Baylis-Hillman reaction and the Diels-Alder reaction, we report a highly enantio-, regio-, and diastereoselective synthesis of hexahydro-2H-chromenes via two sequential [4 + 2] cycloadditions. These tandem and formal cycloadditions have also been performed as a "one-pot" sequence to access the corresponding heterocycles constituting up to five contiguous stereocenters in excellent yields and stereoselectivity.


Asunto(s)
Benzopiranos/síntesis química , Benzopiranos/química , Reacción de Cicloadición , Estructura Molecular
10.
Org Lett ; 13(21): 5732-5, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21970616

RESUMEN

Allene esters are unique not only as excellent electrophiles but also because of their ability for subsequent reactivity after the initial nucleophilic attack. A mechanistically inspired cyclization using ethyl-2,3-butadienoate and acyclic enones to provide dihydropyrans in excellent yields and enantioselectivity under solvent-free conditions at room temperature is reported.


Asunto(s)
Butadienos/síntesis química , Catálisis , Ciclización , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA