Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31175187

RESUMEN

Two new modified Bacillus thuringiensis (Bt) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest.IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda, a maize pest that already has developed resistance to Bacillus thuringiensis (Bt) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Spodoptera/efectos de los fármacos , Spodoptera/metabolismo , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Endotoxinas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/genética , Insecticidas/metabolismo , Insecticidas/farmacología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/parasitología , Unión Proteica , Spodoptera/genética , Zea mays/parasitología
2.
Transgenic Res ; 25(1): 1-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26433587

RESUMEN

As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.


Asunto(s)
Artrópodos/fisiología , Plantas Modificadas Genéticamente , Medición de Riesgo/métodos , Zea mays/genética , Animales , Argentina , Bacillus thuringiensis/genética , Brasil , Productos Agrícolas , Ecosistema , Ambiente , Glicina/análogos & derivados , Glicina/farmacología , Insecticidas/farmacología , Densidad de Población , ARN Bicatenario , Estados Unidos , Glifosato
3.
J Econ Entomol ; 106(3): 1260-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23865191

RESUMEN

The abundance and distribution of insect herbivores is determined by, among other things, plant quality and natural enemies. These two factors vary temporally and spatially, subsequently affecting seasonal population dynamics. The relative influence of plant quality and natural enemies on the seasonal dynamics of Bemisia tabaci (Gennadius) was investigated in a 3-yr field study in cotton. Plant quality was manipulated through varying irrigation regimes: irrigations done at 20, 40, and 60% soil water depletions; and natural enemy densities were manipulated using broad spectrum insecticide applications that reduced their densities compared with unsprayed controls. In each year, densities of B. tabaci eggs, large nymphs and adults were consistently higher when natural enemy densities were reduced compared with when they were left unaltered, regardless of irrigation regime. In contrast, effects of plant quality on densities of all whitefly stages were weak and inconsistent. In addition, natural enemy densities and predator:prey ratios also were not generally affected by plant quality. Interactions between natural enemies and plant quality on whitefly dynamics were rare. In general, whitefly densities were elevated two-thirds of the time and increased two- to sixfold when natural enemy densities were reduced compared with plant quality effects which influenced whitefly densities about one-third of the time and were expressed inconsistently over the years. This indicates that natural enemies exert a comparatively greater influence on seasonal dynamics of B. tabaci in cotton than plant quality, as manipulated by differential irrigation.


Asunto(s)
Riego Agrícola , Cadena Alimentaria , Gossypium/crecimiento & desarrollo , Hemípteros/fisiología , Animales , Arizona , Insectos/efectos de los fármacos , Insecticidas/farmacología , Ninfa/fisiología , Compuestos Organotiofosforados/farmacología , Óvulo/fisiología , Fosforamidas/farmacología , Densidad de Población , Dinámica Poblacional , Distribución Aleatoria , Estaciones del Año
4.
Pest Manag Sci ; 77(8): 3727-3736, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33624355

RESUMEN

BACKGROUND: The pyramided genetically modified maize (Zea mays [L.]) event MON 95379, expressing the Cry1B.868 and Cry1Da_7 proteins, was designed to protect against larval feeding damage by the fall armyworm, Spodoptera frugiperda (FAW). Here, we conducted laboratory, greenhouse, and field studies to assess the dose and field efficacy of MON 95379 against FAW and inform the development of insect resistance management plans. RESULTS: The Cry1B.868 and Cry1Da_7 proteins were active against susceptible FAW neonates in diet-incorporation bioassays: median lethal concentration [LC50 ] (95% CI) = 62.8 (42.6-87.6) µg/ml diet for Cry1B.868 and 9.4 (5.3-18.6) µg/ml diet for Cry1Da_7. In laboratory leaf disc bioassays, MON 95379 maize and experimental maize lines expressing the individual components were effective in controlling susceptible FAW. In whole-plant assays, MON 95379 controlled FAW resistant to the Cry1A.105 and Cry2Ab2 proteins. Likewise, under field conditions, MON 95379 maize expressing Cry1B.868 and Cry1Da_7 was highly effective at protecting plants against the larval feeding of FAW. CONCLUSIONS: The expression of Cry1B.868 and Cry1Da_7 in MON 95379 consistently protected maize plants against larval feeding by FAW and represents an alternative to manage trait resistance issues in South America. © 2021 Bayer Crop Science-US. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Proteínas Hemolisinas , Zea mays , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Endotoxinas , Proteínas Hemolisinas/genética , Humanos , Recién Nacido , Resistencia a los Insecticidas , Larva , Plantas Modificadas Genéticamente , Spodoptera , Zea mays/genética
5.
Environ Entomol ; 43(2): 263-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24533912

RESUMEN

Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.


Asunto(s)
Riego Agrícola/métodos , Cadena Alimentaria , Gossypium/parasitología , Hemípteros/fisiología , Insecticidas/toxicidad , Análisis de Varianza , Animales , Arizona , Gossypium/crecimiento & desarrollo , Hemípteros/efectos de los fármacos , Niacinamida/análogos & derivados , Compuestos Organotiofosforados , Fosforamidas , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA