Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
RNA ; 26(9): 1081-1085, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32439718

RESUMEN

We reported previously that, in budding yeast, transcription rate affects both the efficiency and fidelity of pre-mRNA splicing, especially of ribosomal protein transcripts. Here, we report that the majority of ribosomal protein transcripts with non-consensus 5' splice sites are spliced less efficiently when transcription is faster, and more efficiently with slower transcription. These results support the "window of opportunity" model, and we suggest a possible mechanism to explain these findings.


Asunto(s)
Empalme del ARN/genética , Saccharomycetales/genética , Precursores del ARN/genética , Ribosomas/genética , Transcripción Genética/genética
2.
Genome Res ; 28(2): 203-213, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29254943

RESUMEN

The functional consequences of alternative splicing on altering the transcription rate have been the subject of intensive study in mammalian cells but less is known about effects of splicing on changing the transcription rate in yeast. We present several lines of evidence showing that slow RNA polymerase II elongation increases both cotranscriptional splicing and splicing efficiency and that faster elongation reduces cotranscriptional splicing and splicing efficiency in budding yeast, suggesting that splicing is more efficient when cotranscriptional. Moreover, we demonstrate that altering the RNA polymerase II elongation rate in either direction compromises splicing fidelity, and we reveal that splicing fidelity depends largely on intron length together with secondary structure and splice site score. These effects are notably stronger for the highly expressed ribosomal protein coding transcripts. We propose that transcription by RNA polymerase II is tuned to optimize the efficiency and accuracy of ribosomal protein gene expression, while allowing flexibility in splice site choice with the nonribosomal protein transcripts.


Asunto(s)
ARN Polimerasa II/genética , Empalme del ARN/genética , Saccharomycetales/genética , Transcripción Genética , Empalme Alternativo , Exones/genética , Intrones/genética , Sitios de Empalme de ARN/genética , Elongación de la Transcripción Genética
3.
Yeast ; 36(1): 75-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30375036

RESUMEN

The auxin-inducible degron (AID) is a useful technique to rapidly deplete proteins of interest in nonplant eukaryotes. Depletion is achieved by addition of the plant hormone auxin to the cell culture, which allows the auxin-binding receptor, TIR1, to target the AID-tagged protein for degradation by the proteasome. Fast depletion of the target protein requires good expression of TIR1 protein, but as we show here, high levels of TIR1 may cause uncontrolled depletion of the target protein in the absence of auxin. To enable conditional expression of TIR1 to a high level when required, we regulated the expression of TIR1 using the ß-estradiol expression system. This is a fast-acting gene induction system that does not cause secondary effects on yeast cell metabolism. We demonstrate that combining the AID and ß-estradiol systems results in a tightly controlled and fast auxin-induced depletion of nuclear target proteins. Moreover, we show that depletion rate can be tuned by modulating the duration of ß-estradiol preincubation. We conclude that TIR1 protein is a rate-limiting factor for target protein depletion in yeast, and we provide new tools that allow tightly controlled, tuneable, and efficient depletion of essential proteins whereas minimising secondary effects.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/genética , Saccharomycetales/genética , Estradiol , Expresión Génica , Transporte de Proteínas , Proteolisis , Saccharomycetales/metabolismo , Activación Transcripcional
5.
Artículo en Inglés | MEDLINE | ID: mdl-23700380

RESUMEN

Prader-Willi syndrome (PWS) is caused by the loss of RNA expression from an imprinted region on chromosome 15 that includes SNRPN, SNORD115, and SNORD116. Currently, there are no mouse models that faithfully reflect the human phenotype and investigations rely on human post-mortem material. During molecular characterization of tissue deposited in a public brain bank from a patient diagnosed with Prader-Willi syndrome, we found RNA expression from SNRPN, SNORD115, and SNORD116 which does not support a genetic diagnosis of Prader-Willi syndrome. The patient was a female, Caucasian nursing home resident with history of morbid obesity (BMI 56.3) and mental retardation. She died at age of 56 from pulmonary embolism. SNORD115 and SNORD116 are unexpectedly stable in post mortem tissue and can be used for post-mortem diagnosis. Molecular characterization of PWS tissue donors can confirm the diagnosis and identify those patients that have been misdiagnosed.

6.
Bioinformation ; 8(17): 807-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23139589

RESUMEN

Pathogenesis-related protein 1a of Hordeum vulgare subsp. Vulgare (HvPR-1a) is induced by various pathogens and stress related factors. It plays important roles in plant defense system. Since the discovery of HvPR-1a a great deal of research has been focused on its isolation and characterization. However, three dimensional structure of HvPR-1a is still unknown. 3D structure can be used for determining protein function, and identifying novel protein folds and potential targets for regulation. The protein model was developed using MODELLER 9v10. Physicochemical characterization and functional annotation of the model carried out with Expasy's ProtParam server and three different conserved domain finding programs including InterProScan, Proteins Families Database (Pfam), and NCBI Conserved Domains Database (NCBI-CDD). Applying validation programs revealed that the model has good quality and the RMSD value is 0.7. The predicted model submitted in Protein Model Database, PMDB for public use. This model will be used in wide range of studies for functional analysis and improvement activity of the protein.

7.
PLoS One ; 7(12): e51266, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284676

RESUMEN

In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP) H/F-mediated regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 5' splice site correlate with the hnRNPH/F enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.


Asunto(s)
Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Animales , Diferenciación Celular/genética , Exones/genética , Genómica , Ratones , Oligodendroglía/citología , Oligodendroglía/metabolismo , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA