Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 16(42): 12701-9, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-20857394

RESUMEN

A crystal structure prediction (CSP) study of three small, rigid and structurally related organic compounds (differing only in the position and number of methyl groups) is presented. A tailor-made force field (TMFF; a non-transferable force field specific for each molecule) was constructed with the aid of a dispersion-corrected density functional theory method (the hybrid method). Parameters for all energy terms in each TMFF were fitted to reference data generated by the hybrid method. Each force field was then employed during structure generation. The experimentally observed crystal structures of two of the three molecules were found as the most stable crystal packings in the lists of their force-field-optimised structures. A number of the most stable crystal structures were re-optimised with the hybrid method. One experimental crystal structure was still calculated to be the most stable structure, whereas for another compound the experimental structure became the third most stable structure according to the hybrid method. For the third molecule, the experimentally observed polymorph, which was found to be the fourth most stable form using its TMFF, became the second most stable form. Good geometrical agreements were observed between the experimental structures and those calculated by both methods. The average structural deviation achieved by the TMFFs was almost twice that obtained with the hybrid method. The TMFF approach was extended by exploring the accuracy of a more general TMFF (GTMFF), which involved fitting the force-field parameters to the reference data for all three molecules simultaneously. This GTMFF was slightly less accurate than the individual TMFFs but still of sufficient accuracy to be used in CSP. A study of the isostructural relationships between these molecules and their crystal lattices revealed a potential polymorph of one of the compounds that has not been observed experimentally and that may be accessible in a thorough polymorph screen, through seeding, or through the use of a suitable tailor-made additive.


Asunto(s)
Modelos Químicos , Tiofenos/química , Cristalización , Cristalografía por Rayos X , Conformación Molecular , Estructura Molecular , Termodinámica
2.
Phys Chem Chem Phys ; 12(30): 8571-9, 2010 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-20532368

RESUMEN

A theoretical investigation of the packing stabilities of three small organic halogen compounds is presented based on a crystal structure prediction (CSP) study. Each compound has four identical halogen atoms (fluorine, chlorine, and bromine) and a four-membered ring consisting of carbon and sulfur atoms arranged alternately. Two halogen atoms are attached to each carbon and two oxygen atoms are attached to each sulfur forming SO(2) functional groups. The crystal structures of these compounds have been determined experimentally and show distinct packing arrangements. Utilising the computational approaches implemented in the GRACE software package, each compound is subjected to a full CSP study using a force field specific for each molecule (called the tailor-made force field or TMFF) and a dispersion corrected solid-state density functional method (or DFT(d) method). Energetically feasible crystal structures are generated in all 230 space groups restricted to a single molecule in the crystallographic asymmetric unit (Z' = 1) using the TMFF of each molecule. Next, a selection of structures with low TMFF lattice energies are further refined with the DFT(d) method. The CSP results show that the experimental crystal structures of the molecules containing fluorine and chlorine are well described energetically and geometrically by their TMFFs and the DFT(d) method. Both approaches locate their experimental lattices as the most stable structures. For the molecule containing bromine, a crystal structure corresponding to the force field optimised experimental structure is located as the second structure in the list of force field predicted structures, ranked by calculated lattice energy. Despite the structural similarity of the predicted and experimental structures, close examination of the DFT(d) optimisation results of the experimental structure reveals a slightly lower energy structure than that found by the CSP simulations. Furthermore, minimisation of the force field optimised structure using the DFT(d) method does not lead to the same minimum as the DFT(d) optimised experimental structure. Based on the CSP results and isostructurality among these three compounds, two new potential polymorphs for the molecules containing chlorine and bromine are proposed. These polymorphs might be obtained experimentally under the right crystallisation conditions.


Asunto(s)
Halógenos/química , Modelos Moleculares , Compuestos Orgánicos/química , Teoría Cuántica , Cristalografía por Rayos X , Conformación Molecular , Termodinámica
3.
J Phys Chem B ; 113(51): 16303-13, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19950907

RESUMEN

In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.


Asunto(s)
Cristalografía por Rayos X , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Programas Informáticos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA