Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(4): 043603, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566828

RESUMEN

We report the levitation of a superconducting lead-tin sphere with 100 µm diameter (corresponding to a mass of 5.6 µg) in a static magnetic trap formed by two coils in an anti-Helmholtz configuration, with adjustable resonance frequencies up to 240 Hz. The center-of-mass motion of the sphere is monitored magnetically using a dc superconducting quantum interference device as well as optically and exhibits quality factors of up to 2.6×10^{7}. We also demonstrate 3D magnetic feedback control of the motion of the sphere. The setup is housed in a dilution refrigerator operating at 15 mK. By implementing a cryogenic vibration isolation system, we can attenuate environmental vibrations at 200 Hz by approximately 7 orders of magnitude. The combination of low temperature, large mass, and high quality factor provides a promising platform for testing quantum physics in previously unexplored regimes with high mass and long coherence times.

2.
Phys Rev Lett ; 127(2): 023601, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296896

RESUMEN

We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion. Using a bang-bang control of the harmonic potential, including the possibility of inverting it, the initial ground-state-cooled levitated nanoparticle coherently expands to large scales and then contracts to the initial state in a time-optimal way. We show that this fast loop protocol can be used to enhance force sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles. We parameterize the performance of the protocol, and therefore the macroscopic quantum regime that could be explored, as a function of displacement and frequency noise in the nanoparticle's center-of-mass motion. This noise analysis accounts for the sources of decoherence relevant to current experiments.

3.
Opt Express ; 24(10): 10512-26, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409874

RESUMEN

We present a thorough investigation of surface deformation and thermal properties of high-damage threshold large-area semiconductor saturable absorber mirrors (SESAMs) designed for kilowatt average power laser oscillators. We compare temperature rise, thermal lensing, and surface deformation of standard SESAM samples and substrate-removed SESAMs contacted using different techniques. We demonstrate that for all cases the thermal effects scale linearly with the absorbed power, but the contacting technique critically affects the strength of the temperature rise and the thermal lens of the SESAMs (i.e. the slope of the linear change). Our best SESAMs are fabricated using a novel substrate-transfer direct bonding technique and show excellent surface flatness (with non-measureable radii of curvature (ROC), compared to astigmatic ROCs of up to 10 m for standard SESAMs), order-of-magnitude improved heat removal, and negligible deformation with absorbed power. This is achieved without altering the saturation behavior or the recovery parameters of the samples. These SESAMs will be a key enabling component for the next generation of kilowatt-level ultrafast oscillators.

4.
Opt Lett ; 39(7): 1980-3, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686654

RESUMEN

Active control and cancellation of residual amplitude modulation (RAM) in phase modulation of an optical carrier is one of the key technologies for achieving the ultimate stability of a laser locked to an ultrastable optical cavity. Furthermore, such techniques are versatile tools in various frequency modulation-based spectroscopy applications. In this Letter we report a simple and robust approach to actively stabilize RAM in an optical phase modulation process. We employ a waveguide-based electro-optic modulator (EOM) to provide phase modulation and implement an active servo with both DC electric field and temperature feedback onto the EOM to cancel both the in-phase and quadrature components of the RAM. This technique allows RAM control on the parts-per-million level where RAM-induced frequency instability is comparable to or lower than the fundamental thermal noise limit of the best available optical cavities.

5.
Proc Natl Acad Sci U S A ; 108(39): 16182-7, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21900608

RESUMEN

Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.

6.
Phys Rev Lett ; 110(1): 010504, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383768

RESUMEN

We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e., generate a state |ψ (perpindicular)} from |ψ} where {ψ|ψ(perpindicular)}= 0, which does not require significant a priori knowledge of the input state. We illustrate how to achieve orthogonalization using the Jaynes-Cummings or beamsplitter interaction, which permits realization in a number of physical systems. Furthermore, we demonstrate how to orthogonalize the motional state of a mechanical oscillator in a cavity optomechanics context by developing a set of coherent phonon level operations. As the mechanical oscillator is a stationary system, such operations can be performed at multiple times providing considerable versatility for quantum state engineering applications. Utilizing this, we additionally introduce a method how to transform any known pure state into any desired target state.

7.
Phys Rev Lett ; 110(14): 143604, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25166988

RESUMEN

Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution and highly isolated from the environment. We show that properly tuned optical parameters allow for the study of the nonequilibrium dynamics of composite nanoparticles with nonisotropic optical friction. We find optically induced ordering and nematic transitions with nonequilibrium analogs to liquid crystal phases for ensembles of dimers.


Asunto(s)
Cristales Líquidos/química , Nanosferas/química , Óptica y Fotónica/métodos , Cinética , Modelos Teóricos
8.
Phys Rev Lett ; 108(15): 153601, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587250

RESUMEN

A pulsed cooling scheme for optomechanical systems is presented that is capable of cooling at much faster rates, shorter overall cooling times, and for a wider set of experimental scenarios than is possible by conventional methods. The proposed scheme can be implemented for both strongly and weakly coupled optomechanical systems in both weakly and highly dissipative cavities. We study analytically its underlying working mechanism, which is based on interferometric control of optomechanical interactions, and we demonstrate its efficiency with pulse sequences that are obtained by using methods from optimal control. The short time in which our scheme approaches the optomechanical ground state allows for a significant relaxation of current experimental constraints. Finally, the framework presented here can be used to create a rich variety of optomechanical interactions and hence offers a novel, readily available toolbox for fast optomechanical quantum control.

9.
Nature ; 444(7115): 67-70, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17080084

RESUMEN

Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements, detection of gravitational waves and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m approximately 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q approximately 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.

10.
Phys Rev Lett ; 107(2): 020405, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797585

RESUMEN

We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is performed taking into account standard sources of decoherence. We provide an operational parameter regime using present-day and planned technology.

11.
Nature ; 434(7030): 169-76, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15758991

RESUMEN

Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

12.
Science ; 374(6564): eabg3027, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618558

RESUMEN

The control of levitated nano- and micro-objects in vacuum­which capitalizes on scientific achievements in the fields of atomic physics, control theory, and optomechanics­is of considerable interest. The ability to couple the motion of levitated systems to internal degrees of freedom, as well as to external forces and systems, provides opportunities for science and technology. Attractive research directions, ranging from fundamental quantum physics to commercial sensors, have been unlocked by the many recent experimental achievements, including motional ground-state cooling of an optically levitated nanoparticle. Here we review the status, challenges, and prospects of levitodynamics, the multidisciplinary research area devoted to understanding, controlling, and using levitated nano- and micro-objects in vacuum.

13.
Science ; 354(6311): 444-448, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789837

RESUMEN

The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

14.
Nat Commun ; 6: 7606, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26216619

RESUMEN

All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the emergence of classical properties in quantum physics. The precise decoherence mechanisms, however, are often unknown for a given system. In this work, we make use of an opto-mechanical resonator to obtain key information about spectral densities of its condensed-matter heat bath. In sharp contrast to what is commonly assumed in high-temperature quantum Brownian motion describing the dynamics of the mechanical degree of freedom, based on a statistical analysis of the emitted light, it is shown that this spectral density is highly non-Ohmic, reflected by non-Markovian dynamics, which we quantify. We conclude by elaborating on further applications of opto-mechanical systems in open system identification.

15.
Nat Commun ; 4: 2295, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23945768

RESUMEN

Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum non-demolition measurements were first introduced in the 1970s for gravitational wave detection, and now such techniques are an indispensable tool throughout quantum science. Here we perform measurements of the position of a mechanical oscillator using pulses of light with a duration much shorter than a period of mechanical motion. Utilizing this back-action-evading interaction, we demonstrate state preparation and full state tomography of the mechanical motional state. We have reconstructed states with a position uncertainty reduced to 19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed 'cooling-by-measurement' to reduce the mechanical mode temperature from an initial 1,100 to 16 K. Future improvements to this technique will allow for quantum squeezing of mechanical motion, even from room temperature, and reconstruction of non-classical states exhibiting negative phase-space quasi-probability.

16.
Phys Rev Lett ; 102(2): 020501, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19257254

RESUMEN

We suggest interfacing nanomechanical systems via an optical quantum bus to atomic ensembles, for which means of high precision state preparation, manipulation, and measurement are available. This allows, in particular, for a quantum nondemolition Bell measurement, projecting the coupled system, atomic-ensemble-nanomechanical resonator, into an entangled EPR state. The entanglement is observable even for nanoresonators initially well above their ground states and can be utilized for teleportation of states from an atomic ensemble to the mechanical system.

17.
Phys Rev Lett ; 99(25): 250401, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18233499

RESUMEN

We propose an immediately realizable scheme showing signatures of multipartite entanglement generated by radiation pressure in a cavity system with a movable mirror. We show how the entanglement involving the inaccessible massive object is unraveled by means of field-field quantum correlations and persists within a wide range of working conditions. Our proposal provides an operative way to infer the quantum behavior of a system that is only partially accessible.

18.
Phys Rev Lett ; 98(3): 030405, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17358666

RESUMEN

We show how stationary entanglement between an optical cavity field mode and a macroscopic vibrating mirror can be generated by means of radiation pressure. We also show how the generated optomechanical entanglement can be quantified, and we suggest an experimental readout scheme to fully characterize the entangled state. Surprisingly, such optomechanical entanglement is shown to persist for environment temperatures above 20 K using state-of-the-art experimental parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA