Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998990

RESUMEN

The tractable preparation of Phase I drug metabolites is a critical step to understand the first-pass behaviour of novel chemical entities (NCEs) in drug discovery. In this study, we have developed a structure-electroactivity relationship (SeAR)-informed electrochemical reaction of the parent 2-chlorophenothiazine and the antipsychotic medication, chlorpromazine. With the ability to dial-in under current controlled conditions, the formation of S-oxide and novel S,S-dioxide metabolites has been achieved for the first time on a multi-milligram scale using a direct batch electrode platform. A potential rationale for the electrochemical formation of these metabolites in situ is proposed using molecular docking to a cytochrome P450 enzyme.


Asunto(s)
Antipsicóticos , Simulación del Acoplamiento Molecular , Fenotiazinas , Antipsicóticos/química , Fenotiazinas/química , Humanos , Técnicas Electroquímicas , Clorpromazina/química , Óxidos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Estructura Molecular
2.
Molecules ; 29(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792267

RESUMEN

In this article, we introduce a proof-of-concept strategy, Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clustered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure.


Asunto(s)
Alcaloides , Benzodioxoles , Técnicas Electroquímicas , Piperidinas , Alcamidas Poliinsaturadas , Benzodioxoles/química , Benzodioxoles/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/química , Piperidinas/química , Piperidinas/metabolismo , Alcaloides/metabolismo , Alcaloides/química , Técnicas Electroquímicas/métodos , Simulación del Acoplamiento Molecular , Humanos , Cromatografía Liquida/métodos
3.
Toxicol Res (Camb) ; 12(2): 150-177, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37125339

RESUMEN

In this concise review, the field of electrosynthesis (ES) as a green methodology for understanding drug metabolites linked to toxicology is exemplified. ES describes the synthesis of chemical compounds in an electrochemical cell. Compared to a conventional chemical reaction, ES operates under green conditions (the electron is the reagent) and has several industrial applications, including the synthesis of drug metabolites for toxicology testing. Understanding which circulating drug metabolites are formed in the body is a crucial stage in the development of new medicines and gives insight into any potential toxic pathologies resulting from the metabolites formed. Current methods to prepare drug metabolites directly from the drug molecule often involve time-consuming multistep syntheses. Throughout this review, the application of green ES to (i) identify drug metabolites, (ii) enable their efficient synthesis, and (iii) investigate the toxicity of the metabolites generated are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA