Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Nat Prod ; 87(3): 583-590, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38414352

RESUMEN

Treatment of 27-O-acetylwithaferin A (2) with the non-nucleophilic base, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), afforded 5ß,6ß-epoxy-4ß-hydroxy-1-oxo-witha-2(3),23(24),25(27)-trienolide (3) and 4, a homodimer of withaferin A resulting from a Diels-Alder [4 + 2] type cycloaddition of the intermediate α,ß-dimethylene-δ-lactone (9). Structures of 3 and 4 were elucidated using HRMS and 1D and 2D NMR spectroscopic data. The structure of 4 was also confirmed by single crystal X-ray crystallographic analysis of its bis-4-O-p-nitrobenzoate (8). Formation of withaferin A homodimer (4) as the major product suggests regio- and stereoselectivity of the Diels-Alder [4 + 2] cycloaddition reaction of 9. Acetylation of 2-4 afforded their acetyl derivatives 5-7, respectively. Compounds 2-4 and 6-8 were evaluated for their cytotoxic activities against four prostate cancer (PC) cell lines (LNCaP, 22Rv1, DU-145, and PC-3) and normal human foreskin fibroblast (HFF) cells. Significantly, 4 exhibited improved activity compared to the other compounds for most of the tested cell lines.


Asunto(s)
Ácido Acético , Witanólidos , Masculino , Humanos , Reacción de Cicloadición , Witanólidos/farmacología , Witanólidos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
2.
Radiology ; 309(1): e230984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37874235

RESUMEN

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Ratas , Humanos , Animales , Gadolinio/farmacocinética , Distribución Tisular , Estudios Prospectivos , Encéfalo , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos
3.
Inorg Chem ; 60(16): 12457-12466, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34347474

RESUMEN

Oligopyrroles form a versatile class of redox-active ligands and electron reservoirs. Although the stabilization of radicals within oligopyrrolic π systems is more common for macrocyclic ligands, bidentate dipyrrindiones are emerging as compact platforms for one-electron redox chemistry in transition-metal complexes. We report the synthesis of a bis(aqua) palladium(II) dipyrrindione complex and its deprotonation-driven dimerization to form a hydroxo-bridged binuclear complex in the presence of water or triethylamine. Electrochemical, spectroelectrochemical, and computational analyses of the binuclear complex indicate the accessibility of two quasi-reversible ligand-centered reduction processes. The product of a two-electron chemical reduction by cobaltocene was isolated and characterized. In the solid state, this cobaltocenium salt features a folded dianionic complex that maintains the hydroxo bridges between the divalent palladium centers. X-band and Q-band EPR spectroscopic experiments and DFT computational analysis allow assignment of the dianionic species as a diradical with spin density almost entirely located on the two dipyrrindione ligands. As established from the EPR temperature dependence, the associated exchange coupling is weak and antiferromagnetic (J ≈ -2.5 K), which results in a predominantly triplet state at the temperatures at which the measurements have been performed.

4.
J Am Chem Soc ; 142(6): 2721-2725, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31989824

RESUMEN

A combination of pulsed EPR, CW EPR, and X-ray absorption spectroscopies has been employed to probe the geometric and electronic structure of the E. coli periplasmic molybdenum-dependent methionine sulfoxide reductase (MsrP). 17O and 1H pulsed EPR spectra show that the as-isolated Mo(V) enzyme form does not possess an exchangeable H2O/OH- ligand bound to Mo as found in the sulfite oxidizing enzymes of the same family. The nature of the unusual CW EPR spectrum has been re-evaluated in light of new data on the MsrP-N45R variant and related small-molecule analogues of the active site. These data point to a novel "thiol-blocked" [(PDT)MoVO(SCys)(thiolate)]- structure, which is supported by new EXAFS data. We discuss these new results in the context of ligand-based and metal-based redox chemistry in the enzymatic oxygen atom transfer reaction.


Asunto(s)
Metionina Sulfóxido Reductasas/metabolismo , Molibdeno/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
5.
Inorg Chem ; 59(16): 11377-11384, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799490

RESUMEN

Tridentate aroyl hydrazones are effective metal chelators in biological settings, and their activity has been investigated extensively for medicinal applications in metal overload, cancer, and neurodegenerative diseases. The aroyl hydrazone motif is found in the recently reported prochelator (AH1-S)2, which has shown antiproliferative proapoptotic activity in mammalian cancer cell lines. Intracellular reduction of this disulfide prochelator leads to the formation of mercaptobenzaldehyde benzoylhydrazone chelator AH1 and to iron sequestration, which in turn impacts cell growth. Herein, we investigate the iron coordination chemistry of AH1 to determine the structural and spectroscopic properties of the iron complexes in the solid state and in solution. A neutral iron(III) complex of 2:1 ligand-to-metal stoichiometry was isolated and characterized fully to reveal two different binding modes for the tridentate AH1 ligand. Specifically, one ligand binds in the monoanionic keto form, whereas the other ligand coordinates as a dianionic enolate. Continuous-wave electron paramagnetic resonance experiments in frozen solutions indicated that this neutral complex is one of three low-spin iron(III) complexes observed depending on the pH of the solution. Electron spin echo envelope modulation (ESEEM) experiments allowed assignment of the three species to different protonation states of the coordinated ligands. Our ESEEM analysis provides a method to distinguish the coordination of aroyl hydrazones in the keto and enolate forms, which influences both the ligand field and overall charge of the complex. As such, this type of analysis could provide valuable information in a variety of studies of iron complexes of aroyl hydrazones, ranging from the investigation of spin-crossover behavior to tracking of their distribution in biological samples.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Hidrazonas/química , Hidrazonas/farmacología , Hierro/química , Línea Celular Tumoral , Cristalografía por Rayos X , Femenino , Humanos , Estructura Molecular , Protones
6.
J Phys Chem A ; 123(32): 7075-7086, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31310526

RESUMEN

The nitric oxide synthase (NOS) enzyme consists of multiple domains connected by flexible random coil tethers. In a catalytic cycle, the NOS domains move within the limits determined by the length and flexibility of the interdomain tethers and form docking complexes with each other. This process represents a key component of the electron transport from the flavin adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate binding domain to the catalytic heme centers located in the oxygenase domain. Studying the conformational behavior of NOS is therefore imperative for a full understanding of the overall catalytic mechanism. In this work, we have investigated the equilibrium positional distributions of the NOS domains and the bound calmodulin (CaM) by using Monte Carlo calculations of the NOS conformations. As a main experimental reference, we have used the magnetic dipole interaction between a bifunctional spin label attached to T34C/S38C mutant CaM and the NOS heme centers, which was measured by pulsed electron paramagnetic resonance. In general, the calculations of the conformational distributions allow one to determine the range and statistics of positions occupied by the tethered protein domains, assess the crowding effect of the multiple domains on each other, evaluate the accessibility of various potential domain docking sites, and estimate the interaction energies required to achieve target populations of the docked states. In the particular application described here, we have established the specific mechanisms by which the bound CaM facilitates the flavin mononucleotide (FMN)/heme interdomain docking in NOS. We have also shown that the intersubunit FMN/heme domain docking and electron transfer in the homodimeric NOS protein are dictated by the existing structural makeup of the protein. Finally, from comparison of the calculated and experimental docking probabilities, the characteristic stabilization energies for the CaM/heme domain and the FMN domain/heme domain docking complexes have been estimated as -4.5kT and -10.5kT, respectively.


Asunto(s)
Óxido Nítrico Sintasa/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Método de Montecarlo , Óxido Nítrico Sintasa/metabolismo , Conformación Proteica
7.
Inorg Chem ; 57(24): 15240-15246, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30418755

RESUMEN

The ability of bilins and other biopyrrins to form fluorescent zinc complexes has been known for more than a century; however, the exact identity of the emissive species remains uncertain in many cases. Herein, we characterize the hitherto elusive zinc complex of tripyrrin-1,14-dione, an analogue of several orange urinary pigments. As previously observed for its Pd(II), Cu(II), and Ni(II) complexes, tripyrrindione binds Zn(II) as a dianionic radical and forms a paramagnetic complex carrying an unpaired electron on the ligand π-system. This species is stable at room temperature and undergoes quasi-reversible ligand-based redox chemistry. Although the complex is isolated as a coordination dimer in the solid state, optical absorption and electron paramagnetic resonance spectroscopic studies indicate that the monomer is prevalent in a tetrahydrofuran solution. The paramagnetic Zn(II) tripyrrindione complex is brightly fluorescent (λabs = 599 nm, λem = 644 nm, ΦF = 0.23 in THF), and its study provides a molecular basis for the observation, made over several decades since the 1930s, of fluorescent behavior of tripyrrindione pigments in the presence of zinc salts. The zinc-bound tripyrrindione radical is thus a new addition to the limited number of stable radicals that are fluorescent at room temperature.


Asunto(s)
Complejos de Coordinación/química , Dipirona/química , Fluorescencia , Piridonas/química , Zinc/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Radicales Libres/química , Ligandos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
8.
Inorg Chem ; 56(11): 6755-6762, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28497967

RESUMEN

The ability of tetrapyrrolic macrocycles to stabilize unpaired electrons and engage in π-π interactions is essential for many electron-transfer processes in biology and materials engineering. Herein, we demonstrate that the formation of π dimers is recapitulated in complexes of a linear tripyrrolic analogue of naturally occurring pigments derived from heme decomposition. Hexaethyltripyrrindione (H3TD1) coordinates divalent transition metals (i.e., Pd, Cu, Ni) as a stable dianionic radical and was recently described as a robust redox-active ligand. The resulting planar complexes, which feature a delocalized ligand-based electronic spin, are stable at room temperature in air and support ligand-based one-electron processes. We detail the dimerization of neutral tripyrrindione complexes in solution through electron paramagnetic resonance (EPR) and visible absorption spectroscopic methods. Variable-temperature measurements using both EPR and absorption techniques allowed determination of the thermodynamic parameters of π dimerization, which resemble those previously reported for porphyrin radical cations. The inferred electronic structure, featuring coupling of ligand-based electronic spins in the π dimers, is supported by density functional theory (DFT) calculations.

9.
Angew Chem Int Ed Engl ; 56(20): 5603-5606, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28398613

RESUMEN

Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivity were systematically ruled out. Intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Gadolinio/química , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Conformación Molecular , Agua/química
10.
Biophys J ; 111(1): 178-84, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27410745

RESUMEN

Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase.


Asunto(s)
Actomiosina/metabolismo , Ficoll/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis/efectos de los fármacos , Cinética
11.
Biopolymers ; 104(4): 412-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808361

RESUMEN

iron-sulfur cluster binding proteins perform an astounding variety of functions, and represent one of the most abundant classes of metalloproteins. Most often, they constitute pairs or chains and act as electron transfer modules either within complex redox enzymes or within small diffusible proteins. We have previously described the design of a three-helix bundle that can bind two clusters within its hydrophobic core. Here, we use single-point mutations to exchange one of the Cys ligands coordinating the cluster to either Leu or Ser. We show that the mutants modulate the redox potential of the clusters and stabilize the [3Fe-4S] form over the [4Fe-4S] form, supporting the use of model iron-sulfur cluster proteins as modules in the design of complex redox enzymes.


Asunto(s)
Proteínas Hierro-Azufre/química , Hierro/química , Péptidos/química , Azufre/química , Transporte de Electrón
12.
J Phys Chem A ; 119(45): 11066-75, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26477677

RESUMEN

The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.


Asunto(s)
Electrones , Óxido Nítrico Sintasa/química , Fotólisis , Animales , Monóxido de Carbono/química , Hemo/química , Humanos , Cinética , Rayos Láser , Ratones , Mutación , Óxido Nítrico/química , Óxido Nítrico Sintasa/genética , Conformación Proteica , Ratas
13.
J Phys Chem A ; 119(25): 6641-9, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26035438

RESUMEN

Oxidation of L-arginine (L-Arg) to nitric oxide (NO) by NO synthase (NOS) takes place at the heme active site. It is of current interest to study structures of the heme species that activates O2 and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) spectroscopy was used to probe the hydrogen bonding of the NO ligand in the ferrous-NO heme center of neuronal NOS (nNOS) without a substrate and with L-Arg or N-hydroxy-L-arginine (NOHA) substrates. Unexpectedly, no H-bonding interaction connecting the NO ligand to the active site water molecule or the Arg substrate was detected, in contrast to the results obtained by X-ray crystallography for the Arg-bound nNOS heme domain [Li et al. J. Biol. Inorg. Chem. 2006, 11, 753-768]. The nearby exchangeable proton in both the no-substrate and Arg-containing nNOS samples is located outside the H-bonding range and, on the basis of the obtained structural constraints, can belong to the active site water (or OH). On the contrary, in the NOHA-bound sample, the nearby exchangeable hydrogen forms an H-bond with the NO ligand (on the basis of its distance from the NO ligand and a nonzero isotropic hfi constant), but it does not belong to the active site water molecule because the water oxygen atom (detected by (17)O ENDOR) is too far. This hydrogen should therefore come from the NOHA substrate, which is in agreement with the X-ray crystallography work [Li et al. Biochemistry 2009, 48, 10246-10254]. The nearby nonexchangeable hydrogen atom assigned as H(ε) of Phe584 was detected in all three samples. This hydrogen atom may have a stabilizing effect on the NO ligand and probably determines its position.


Asunto(s)
Hemo/química , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico/química , Animales , Arginina/química , Catálisis , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Hidrógeno/química , Enlace de Hidrógeno , Protones , Ratas , Agua/química
14.
Angew Chem Int Ed Engl ; 54(49): 14894-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26448632

RESUMEN

The tripyrrin-1,14-dione scaffold of urinary pigment uroerythrin coordinates divalent palladium as a planar tridentate ligand. Spectroscopic, structural and computational investigations reveal that the tripyrrindione ligand binds as a dianionic radical, and the resulting complex is stable at room temperature. One-electron oxidation and reduction reactions do not alter the planar coordination sphere of palladium(II) and lead to the isolation of two additional complexes presenting different redox states of the ligand framework. Unaffected by stability problems common to tripyrrolic fragments, the tripyrrindione ligand offers a robust platform for ligand-based redox chemistry.


Asunto(s)
Complejos de Coordinación/química , Paladio/química , Piridonas/química , Ligandos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Teoría Cuántica
15.
Biochemistry ; 53(24): 3990-4, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24914472

RESUMEN

Nitrile hydratases (NHases) possess a mononuclear iron or cobalt cofactor whose coordination environment includes rare post-translationally oxidized cysteine sulfenic and sulfinic acid ligands. This cofactor is located in the α-subunit at the interfacial active site of the heterodimeric enzyme. Unlike canonical NHases, toyocamycin nitrile hydratase (TNHase) from Streptomyces rimosus is a unique three-subunit member of this family involved in the biosynthesis of pyrrolopyrimidine antibiotics. The subunits of TNHase are homologous to the α- and ß-subunits of prototypical NHases. Herein we report the expression, purification, and characterization of the α-subunit of TNHase. The UV-visible, EPR, and mass spectra of the α-subunit TNHase provide evidence that this subunit alone is capable of synthesizing the active site complex with full post-translational modifications. Remarkably, the isolated post-translationally modified α-subunit is also catalytically active with the natural substrate, toyocamycin, as well as the niacin precursor 3-cyanopyridine. Comparisons of the steady state kinetic parameters of the single subunit variant to the heterotrimeric protein clearly show that the additional subunits impart substrate specificity and catalytic efficiency. We conclude that the α-subunit is the minimal sequence needed for nitrile hydration providing a simplified scaffold to study the mechanism and post-translational modification of this important class of catalysts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidroliasas/metabolismo , Actinomycetales/enzimología , Proteínas Bacterianas/química , Catálisis , Hidroliasas/química , Cinética , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
J Am Chem Soc ; 136(49): 17343-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25437708

RESUMEN

[Fe-S] clusters, nature's modular electron transfer units, are often arranged in chains that support long-range electron transfer. Despite considerable interest, the design of biomimetic artificial systems emulating multicluster-binding proteins, with the final goal of integrating them in man-made oxidoreductases, remains elusive. Here, we report a novel bis-[4Fe-4S] cluster binding protein, DSD-Fdm, in which the two clusters are positioned within a distance of 12 Å, compatible with the electronic coupling necessary for efficient electron transfer. The design exploits the structural repeat of coiled coils as well as the symmetry of the starting scaffold, a homodimeric helical protein (DSD). In total, eight hydrophobic residues in the core of DSD were replaced by eight cysteine residues that serve as ligands to the [4Fe-4S] clusters. Incorporation of two [4Fe-4S] clusters proceeds with high yield. The two [4Fe-4S] clusters are located in the hydrophobic core of the helical bundle as characterized by various biophysical techniques. The secondary structure of the apo and holo proteins is conserved; further, the incorporation of clusters results in stabilization of the protein with respect to chemical denaturation. Most importantly, this de novo designed protein can mimic the function of natural ferredoxins: we show here that reduced DSD-Fdm transfers electrons to cytochrome c, thus generating the reduced cyt c stoichiometrically.


Asunto(s)
Ferredoxinas/química , Transporte de Electrón , Ferredoxinas/síntesis química , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica
17.
Inorg Chem ; 53(14): 7518-26, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25008284

RESUMEN

The pyrrolyldipyrrin motif is found in several naturally occurring prodigiosin pigments. The potential roles of the interactions of prodigiosins with transition metals and the properties of metal-bound pyrrolyldipyrrins, however, have been difficult to assess because of the very limited number of well-characterized stable complexes. Here, we show that the introduction of a meso-aryl substituent and an ethyl ester group during the sequential assembly of the three heterocycles affords a pyrrolyldipyrrin of enhanced coordinating abilities when compared to that of natural prodigiosins. UV-visible absorption studies indicate that this ligand promptly binds Zn(II) ions with 2:1 ligand-to-metal stoichiometry and Cu(II) ions with 1:1 stoichiometry. Notably, no addition of base is required for the formation of the resulting stable complexes. The crystal structures reveal that whereas the tetrahedral zinc center engages two nitrogen donors on each ligand, the pseudosquare planar copper complex features coordination of all three pyrrolic nitrogen atoms and employs the ester group as a neutral ligand. This first example of coordination of a redox-active transition metal within a fully conjugated pyrrolyldipyrrin framework was investigated spectroscopically by electron paramagnetic resonance to show that the 1:1 metal-to-ligand ratio found in the crystal structure is also maintained in solution.


Asunto(s)
Cobre/química , Prodigiosina/química , Pirroles/química , Zinc/química , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
18.
Inorg Chem ; 53(2): 961-71, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24387640

RESUMEN

Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme. However, it has not been possible to use EPR to probe the dithiolene sulfurs directly since naturally abundant (32)S has no nuclear spin (I = 0). Here we describe direct incorporation of (33)S (I = 3/2), the only stable magnetic sulfur isotope, into MPT using controlled in vitro synthesis with purified proteins. The electron spin echo envelope modulation (ESEEM) spectra from (33)S-labeled MPT in this catalytically active SO variant are dominated by the "interdoublet" transition arising from the strong nuclear quadrupole interaction, as also occurs for the (33)S-labeled exchangeable equatorial sulfite ligand [ Klein, E. L., et al. Inorg. Chem. 2012 , 51 , 1408 - 1418 ]. The estimated experimental hfi and nqi parameters for (33)S (aiso = 3 MHz and e(2)Qq/h = 25 MHz) are in good agreement with those predicted by DFT. In addition, the DFT calculations show that the two (33)S atoms are indistinguishable by EPR and reveal a strong intermixing between their out-of-plane pz orbitals and the dxy orbital of Mo(V).


Asunto(s)
Coenzimas/química , Molibdeno/química , Ingeniería de Proteínas , Sulfito-Oxidasa/química , Sulfito-Oxidasa/metabolismo , Biocatálisis , Dominio Catalítico , Coenzimas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Molibdeno/metabolismo , Teoría Cuántica , Sulfito-Oxidasa/genética , Isótopos de Azufre/química
19.
J Phys Chem A ; 118(34): 6864-72, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25046446

RESUMEN

The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.


Asunto(s)
Calmodulina/química , Óxido Nítrico Sintasa de Tipo I/química , Animales , Calcio/química , Calmodulina/genética , Simulación por Computador , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Escherichia coli , Hemo/química , Cinética , Fenómenos Magnéticos , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo I/genética , Ratas , Marcadores de Spin , Transfección
20.
Biochemistry ; 52(43): 7586-94, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24090184

RESUMEN

In nature, protein subunits containing multiple iron-sulfur clusters often mediate the delivery of reducing equivalents from metabolic pathways to the active site of redox proteins. The de novo design of redox active proteins should include the engineering of a conduit for the delivery of electrons to and from the active site, in which multiple redox active centers are arranged in a controlled manner. Here, we describe a designed three-helix protein, DSD-bis[4Fe-4S], that coordinates two iron-sulfur clusters within its hydrophobic core. The design exploits the pseudo two-fold symmetry of the protein scaffold, DSD, which is a homodimeric three-helix bundle. Starting from the sequence of the parent peptide, we mutated eight leucine residues per dimer in the hydrophobic core to cysteine to provide the first coordination sphere for cubane-type iron-sulfur clusters. Incorporation of two clusters per dimer is readily achieved by in situ reconstitution and imparts increased stability to thermal denaturation compared to that of the apo form of the peptide as assessed by circular dichroism-monitored thermal denaturation. The presence of [4Fe-4S] clusters in intact proteins is confirmed by UV-vis spectroscopy, gel filtration, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy. Pulsed electron-electron double-resonance experiments have detected a magnetic dipole interaction between the two clusters ~0.7 MHz, which is consistent with the expected intercluster distance of 29-34 Å. Taken together, our data demonstrate the successful design of an artificial multi-iron-sulfur cluster protein with evidence of cluster-cluster interaction. The design principles implemented here can be extended to the design of multicluster molecular wires.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Apoproteínas/síntesis química , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dicroismo Circular , Complejos de Coordinación , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Calor/efectos adversos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Hierro-Azufre/síntesis química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Simulación del Acoplamiento Molecular , Desnaturalización Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Thermotoga maritima/enzimología , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA